J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1161-1168.doi: 10.1007/s12204-022-2549-8

• • 上一篇    下一篇

基于LSTM-BiDBN入侵检测系统的在线车辆取证责任方认定方法

刘文1,3,许剑新2,4,杨根科1,3,陈媛芳5   

  1. (1. 宁波工业互联网研究院,浙江宁波 315000;2. 上海交通大学宁波人工智能研究院,浙江宁波 315000;3. 上海交通大学 自动化系,上海 200240;4. 浙江大学 控制科学与工程学院,杭州 310027;5. 杭州电子科技大学 网络空间安全学院,杭州 310018)
  • 收稿日期:2021-05-24 接受日期:2021-11-19 出版日期:2024-11-28 发布日期:2024-11-28

Online Vehicle Forensics Method of Responsible Party for Accidents Based on LSTM-BiDBN External Intrusion Detection

LIU Wen1,3 (刘文), XU Jianxin2,4 (许剑新), YANG Genke1,3∗ (杨根科), CHEN Yuanfang5 (陈媛芳)   

  1. (1. Ningbo Industrial Internet Institute, Ningbo 315000, Zhejiang, China; 2. Ningbo Artificial Intelligence Institute of Shanghai Jiao Tong University, Ningbo 315000, Zhejiang, China; 3. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China; 4. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; 5. School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China)
  • Received:2021-05-24 Accepted:2021-11-19 Online:2024-11-28 Published:2024-11-28

摘要: 车辆数据是交通事故数字取证的重要来源之一。提出了一种利用二进制编码的长短期记忆-深度信念网络(LSTM-BiDBN)控制器局域网标识符(CAN ID)提取CAN ID事件序列和CAN ID本身语义的新方法。该方法不仅检测针对特定CAN ID的攻击,而且充分考虑了电子控制单元之间潜在的相互作用。通过这种方式,可以检测车辆是否被外界入侵,从而在线确定事故的责任方。使用LSTM-BiDBN来区分CAN入侵数据集上的无攻击和异常情况。实验结果表明:与传统方法相比,该方法在识别拒绝服务攻击、模糊攻击和模拟攻击引起的异常方面更为有效,准确率为97.02%,误检率为6.09%,错误率为1.94%。

关键词: 数字取证, 深度信念网络, 长短期记忆, 二进制编码, 控制器局域网标识符, 责任方

Abstract: Vehicle data is one of the important sources of traffic accident digital forensics. We propose a novel method using long short-term memory-deep belief network by binary encoding (LSTM-BiDBN) controller area network identifier (CAN ID) to extract the event sequence of CAN IDs and the semantic of CAN IDs themselves. Instead of detecting attacks only aimed at a specific CAN ID, the proposed method fully considers the potential interaction between electronic control units. By this means, we can detect whether the vehicle has been invaded by the outside, to online determine the responsible party of the accident. We use our LSTM-BiDBN to distinguish attack-free and abnormal situations on CAN-intrusion-dataset. Experimental results show that our proposed method is more effective in identifying anomalies caused by denial of service attack, fuzzy attack and impersonation attack with an accuracy value of 97.02%, a false-positive rate of 6.09%, and a false-negative rate of 1.94% compared with traditional methods.

中图分类号: