上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1584-1597.doi: 10.16183/j.cnki.jsjtu.2021.526

所属专题: 《上海交通大学学报》2022年“新型电力系统与综合能源”专题

• 新型电力系统与综合能源 • 上一篇    下一篇

漂浮式光伏网格对海上天气突变的感知方法

姜淏予1, 王沛伦2, 葛泉波3(), 徐今强1, 罗朋1, 姚刚2   

  1. 1.广东海洋大学 电子与信息工程学院,广东 湛江 524088
    2.上海海事大学 物流工程学院, 上海 200135
    3.南京信息工程大学 自动化学院,南京 210044
  • 收稿日期:2021-12-18 出版日期:2022-12-28 发布日期:2023-01-05
  • 通讯作者: 葛泉波 E-mail:qbge_tju@163.com.
  • 作者简介:姜淏予(1989-),男,广东省湛江市人,博士生,从事能源与自动化交叉科学、无人自主决策系统研究.
  • 基金资助:
    国家自然科学基金(61803136);广东省基础与应用基础研究基金(2021A1515011948)

A Sensing Method Based of Floating Photovoltaic Grids to Sudden Changes in Marine Weather

JIANG Haoyu1, WANG Peilun2, GE Quanbo3(), XU Jinqiang1, LUO Peng1, YAO Gang2   

  1. 1. College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    2. College of Logistics Engineering, Shanghai Maritime University, Shanghai 200135, China
    3. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2021-12-18 Online:2022-12-28 Published:2023-01-05
  • Contact: GE Quanbo E-mail:qbge_tju@163.com.

摘要:

漂浮式光伏在海洋上的应用目前主要受制于海底电缆与特质浮筒的成本问题,该能量如果被海上牧场等场景的无人管理系统就地消纳则表现出高度的适用匹配性.这种场景下由漂浮式光伏形成的网格系统可以解决海上牧场等对突变天气的预警需求.由于光伏出力模型对天气随机变化的强跟随性, 基于大面积光伏的时空相关性分析,通过硬件、距离、时延、天气等因素建立相似电站融合估计关系.基于长短期记忆网络算法对相似电站时序进行跟踪,所得超短期预测值可以估计目标相似电站的状态.用某市城区规模的数据验证了该思路的可行性,表明该框架可以弥补传统研究的不足.

关键词: 漂浮式光伏, 海洋天气, 相似电站, 长短期记忆网络

Abstract:

Currently, the application of floating photovoltaics in the ocean is mainly restricted by the cost of submarine cables and special buoys. It will show a high degree of applicability if the energy is consumed by the unmanned management systems on ocean farms and in other scenarios. The grid system formed by the floating photovoltaics can satisfy the early warning requirements of the sudden weather changes on ocean farms. Due to the strong follow-up of the photovoltaic output model to random weather changes, based on the spatial-temporal correlation analysis of large-area photovoltaics, hardware, distance, time delay, and weather, a similar power station fusion estimation relationship is established. Based on the long short-term memory (LSTM) algorithm, the ultra-short-term prediction value of the time sequence tracking of similar power stations can be used to estimate the early warning of the status of target similar power stations. The city-scale data was used to verify the feasibility of the proposed idea, which shows that the framework can complement traditional research deficiencies.

Key words: floating photovoltaic, marine weather, similar power station, long short-term memory (LSTM)

中图分类号: