上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (7): 1108-1117.doi: 10.16183/j.cnki.jsjtu.2022.419
收稿日期:
2022-10-24
修回日期:
2022-11-23
接受日期:
2022-12-01
出版日期:
2024-07-28
发布日期:
2024-07-26
通讯作者:
谭 勇,教授,博士生导师;E-mail:tanyong21th@tongji.edu.cn.
作者简介:
刘俊城(1997-),博士生,从事基坑工程变形预测、事故分析等方面的研究.
基金资助:
LIU Juncheng, TAN Yong(), ZHANG Shengjie
Received:
2022-10-24
Revised:
2022-11-23
Accepted:
2022-12-01
Online:
2024-07-28
Published:
2024-07-26
摘要:
为更好预测深基坑开挖期间地下连续墙的侧向位移变形,基于长短期记忆神经网络(LSTM)智能算法理论构建了LSTM多步预测模型.首先对多步预测模型的多输出策略进行论述,其次详细介绍了LSTM多步预测模型的构建方法,并对模型输入集空间维度和时间维度两项超参数进行探究,以提高模型的预测准确度.最后依托某富水砂土深基坑工程实例,分析了模型预测值与实际监测值的差异.3个典型监测点的数据分析结果表明LSTM多步预测模型具有较强的泛化能力,相关算法对深基坑开挖变形预测方法的改进优化具有参考价值.
中图分类号:
刘俊城, 谭勇, 张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J]. 上海交通大学学报, 2024, 58(7): 1108-1117.
LIU Juncheng, TAN Yong, ZHANG Shengjie. Multi-Step Prediction of Excavation Deformation of Subway Station Based on Intelligent Algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117.
[1] | ZHENG G, YANG X, ZHOU H, et al. A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128. |
[2] | ZHENG G, DU Y, CHENG X, et al. Characteristics and prediction methods for tunnel deformations induced by excavations[J]. Geomechanics and Engineering, 2017, 12(3): 361-397. |
[3] | OU C Y, TENG F, LI C W. A simplified estimation of excavation-induced ground movements for adjacent building damage potential assessment[J]. Tunnelling and Underground Space Technology, 2020, 106: 103561. |
[4] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[5] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 27: 3104-3112. |
[6] | XIE P, ZHOU A, CHAI B. The application of long short-term memory (LSTM) method on displacement prediction of mu.pngactor-induced landslides[J]. IEEE Access, 2019, 7: 54305-54311. |
[7] | ZHANG P, WU H N, CHEN R P, et al. A critical evaluation of machine learning and deep learning in shield-ground interaction prediction[J]. Tunnelling and Underground Space Technology, 2020, 106: 103593. |
[8] | 钱建固, 吴安海, 季军, 等. 基于小波优化LSTM-ARMA 模型的岩土工程非线性时间序列预测[J]. 同济大学学报(自然科学版), 2021, 49(8): 1107-1115. |
QIAN Jiangu, WU Anhai, JI Jun, et al. Nonlinear time series prediction of geotechnical engineering based on wavelet optimization LSTM-ARMA model[J]. Journal of Tongji University (Natural Science), 2021, 49(8): 1107-1115. | |
[9] | 赵华菁, 张名扬, 刘维, 等. 基于神经网络算法的深基坑地连墙变形动态预测[J]. 地下空间与工程学报, 2021,17 (Sup.1):321-327. |
ZHAO Huajing, ZHANG Mingyang, LIU Wei, et al. Dynamic prediction of deformation of ground connected wall in deep foundation pit based on neural network algorithm[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Sup.1): 321-327. | |
[10] | AHMED A, KHALID M. Multi-step ahead wind forecasting using nonlinear autoregressive neural networks[J]. Energy Procedia, 2017, 134: 192-204. |
[11] | SHAO X, KIM C S. Multi-step short-term power consumption forecasting using multi-channel LSTM with time location considering customer behavior[J]. IEEE Access, 2020, 8: 125263-125273. |
[12] | HAAS A, ROSSBERG A, SCHUFF D L, et al. Bringing the web up to speed with WebAssembly[C]//Acm Sigplan Conference on Programming Language Design & Implementation. Barcelona, Spain:ACM, 2017: 185-200. |
[13] | RICE L, WONG E, KOLTER Z. Overfitting in adversarially robust deep learning[C]//International Conference on Machine Learning. Vienna, Austria: PMLR, 2020: 8093-8104. |
[14] | MASSERAN N, RAZALI A M, IBRAHIM K, et al. Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model[J]. Environmental Monitoring and Assessment, 2016, 188(1): 1-12. |
[15] | JAIS I K M, ISMAIL A R, NISA S Q. Adam optimization algorithm for wide and deep neural network[J]. Knowledge Engineering and Data Science, 2019, 2(1): 41-46. |
[16] | BAI C L, ZHAO H. Generalized extended tanh-function method and its application[J]. Chaos, Solitons & Fractals, 2006, 27(4): 1026-1035. |
[17] | SMITH L N. Cyclical learning rates for training neural networks[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, CA, USA: IEEE, 2017: 464-472. |
[18] | TAN Y, WANG D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. |
[19] | 丁勇春, 王建华, 徐中华, 等. 上海软土地区地铁车站深基坑的变形特性[J]. 上海交通大学学报, 2008, 42(11): 1871-1875. |
DING Yongchun, WANG Jianhua, XU Zhonghua, et al. Deformation characteristics of deep excavations for metro stations in Shanghai soft soil deposits[J]. Journal of Shanghai Jiao Tong University, 2008, 42(11): 1871-1875. |
[1] | 赵香山, 陈锦剑, 黄忠辉, 王建华. 基坑变形数值分析中土体力学参数的确定方法[J]. 上海交通大学学报, 2016, 50(01): 1-7. |
[2] | 周坤鹏1a,王颖轶1b,朱继文2,黄醒春1a,1b. 强蠕变软土条件下地铁基坑的施工变形特性分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1413-1418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||