J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (4): 485-497.doi: 10.1007/s12204-022-2412-y
收稿日期:
2021-05-18
出版日期:
2022-07-28
发布日期:
2022-08-11
JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青)
Received:
2021-05-18
Online:
2022-07-28
Published:
2022-08-11
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497.
JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青). USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497.
[1] | SUDLOW C L, W ARLOW C P. Comparable studies of the incidence of stroke and its pathological types:Results from an international collaboration [J]. Stroke,1997, 28(3): 491-499. |
[2] | DOYLE K P, SIMON R P, STENZEL-POORE M P.Mechanisms of ischemic brain damage [J]. Neuropharmacology, 2008, 55(3): 310-318. |
[3] | GONZALEZ R G, HIRSCH J A, KOROSHETZ W J,et al. Acute ischemic stroke. imaging and intervention[J]. Journal of Neuroradiology, 2006, 33(3): 193. |
[4] | ZAHARCHUK G, EL MOGY I S, FISCHBEIN N J,et al. Comparison of arterial spin labeling and bolusperfusion-weighted imaging for detecting mismatch in acute stroke [J]. Stroke, 2012, 43(7): 1843-1848. |
[5] | MEZZAPESA D M, PETRUZZELLIS M, LUCIVEROV, et al. Multimodal MR examination in acute is-chemic stroke [J]. Neuroradiology, 2006, 48(4): 238-246. |
[6] | DONAHUE J, WINTERMARK M. Perfusion CT and acute stroke imaging: Foundations, applications, and literature review [J]. Journal of Neuroradiology, 2015,42(1): 21-29. |
[7] | GILLEBERT C R, HUMPHREYS G W, MANTINID. Automated delineation of stroke lesions using brain CT images [J]. Neuro Image: Clinical, 2014, 4: 540-548. |
[8] | TURECKOV A A, RODRíGUEZ-S áNCHEZ A J.ISLES Challenge: U-shaped convolution neural net-work with dilated convolution for 3d stroke lesion seg-mentation [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham:Springer, 2019: 319-327. |
[9] | ABULNAGA S M, RUBIN J. Ischemic stroke lesion segmentation in CT perfusion scans using pyramidpooling and focal loss [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries.Cham: Springer, 2019: 352-363. |
[10] | ZHAO S, WU B X, CHU W Q, et al. Correlation maximized structural similarity loss forsemantic segmentation [EB/OL]. (2019-10-19).https://arxiv.org/abs/1910.08711. |
[11] | AKKUS Z, GALIMZIANOV A A, HOOGI A, et al.Deep learning for brain MRI segmentation: State of the art and future directions [J]. Journal of Digital Imaging, 2017, 30(4): 449-459. |
[12] | OLIVEIRA A, PEREIRA S, SIL V A C A. Augmenting data when training a CNN for retinal vessel segmentation: How to warp? [C]//2017 IEEE 5th Portuguese Meeting on Bioengineering. Coimbra: IEEE, 2017: 1-4. |
[13] | PEREIRA S, PINTO A, AL VES V, et al. Brain tumorsegmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240-1251. |
[14] | NAZARI-F ARSANI S, NYMAN M, KARJALAINENT, et al. Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI [J]. Journal of Neuroscience Methods, 2020, 333: 108575. |
[15] | ROTH H R, LU L, F ARAG A, et al. DeepOrgan:Multi-level deep convolutional networks for automatedpancreas segmentation [M]//Medical image computing and computer-assisted intervention - MICCAI 2015.Cham: Springer, 2015: 556-564. |
[16] | ZHAO A, BALAKRISHNAN G, DURAND F, etal. Data augmentation using learned transformations for one-shot medical image segmentation [C]//2019IEEE/CVF Conference on Computer Vision and Pat-tern Recognition. Long Beach, CA: IEEE, 2019: 8535-8545. |
[17] | MOESKOPS P, VIERGEVER M A, MENDRIK A M,et al. Automatic segmentation of MR brain images with a convolutional neural network [J]. IEEE Trans-actions on Medical Imaging, 2016, 35(5): 1252-1261. |
[18] | MILLETARI F, NA V AB N, AHMADI S A. V-net:Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth Inter-national Conference on 3D Vision. Stanford, CA:IEEE, 2016: 565-571. |
[19] | DOSOVITSKIY A, FISCHER P, SPRINGENBERGJ T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9): 1734-1747. |
[20] | MAIER O, MENZE B H, VON DER GABLENTZ J,et al. ISLES 2015: A public evaluation benchmark forischemic stroke lesion segmentation from multispectral MRI [J]. Medical Image Analysis, 2017, 35: 250-269. |
[21] | WINZECK S, HAKIM A, MCKINLEY R, et al. ISLES2016 and 2017: Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI [J].Frontiers in Neurology, 2018, 9: 679. |
[22] | YAHIAOUI A F Z, BESSAID A. Segmentation of is-chemic stroke area from CT brain images [C]//2016International Symposium on Signal, Image, Video and Communications. Tunis: IEEE, 2016: 13-17. |
[23] | ABRAHAM N, KHAN N M. A novel focal Tversky loss function with improved attention U-net for lesion segmentation [C]//2019 IEEE 16th International Symposium on Biomedical Imaging. Venice: IEEE, 2019:683-687.[ |
24 | ] SHEN D G, WU G R, SUK H I. Deep learning in med-ical image analysis [J]. Annual Review of Biomedical Engineering, 2017, 19: 221-248. |
[25] | PINHEIRO G R, VOLTOLINE R, BENTO M, etal. V-net and U-net for ischemic stroke lesion seg-mentation in a small dataset of perfusion data[M]//Brainlesion: Glioma, multiple sclerosis, strokeand traumatic brain injuries. Cham: Springer, 2019:301-309. |
[26] | ANAND V K, KHENED M, ALEX V, et al. Fullyautomatic segmentation for ischemic stroke using CT perfusion maps [M]//Brainlesion: Glioma, multiplesclerosis, stroke and traumatic brain injuries. Cham:Springer, 2019: 328-334. |
[27] | CLèRIGUES A, V AL VERDE S, BERNAL J, et al.A c u t e i s c h e m i c s t r o k e l e s i o n c o r e s e g m e n t a t i o n i n C Tperfusion images using fully convolutional neural net-works [J]. Computers in Biology and Medicine, 2019,115: 103487. |
[28] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017:2999-3007. |
[29] | REKIK I, ALLASSONNIèRE S, CARPENTER T K,et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal [J]. NeuroImage: Clinical, 2012, 1(1): 164-178. |
[30] | KABIR Y, DOJAT M, SCHERRER B, et al. Multimodal MRI segmentation of ischemic stroke lesions[C]//2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Lyon: IEEE, 2007: 1595-1598. |
[31] | KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al. Efficient multi-scale 3D CNN with fully connectedCRF for accurate brain lesion segmentation [J]. Medical Image Analysis, 2017, 36: 61-78. |
[32] | ZHOU Y J, HUANG W J, DONG P, et al. D-UNet: A dimension-fusion U shape network for chronicstroke lesion segmentation [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021, 18(3): 940-950. |
[33] | LUO P, REN J M, PENG Z L. Differentiable learning-to-normalize via switchable normalization [EB/OL]. (2018-06-28). https://arxiv.org/abs/1806.10779. |
[34] | DOLZ J, AYED I B, DESROSIERS C. Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities [M]//Brainlesion: Glioma,multiple sclerosis, stroke and traumatic brain injuries.Cham: Springer, 2019: 271-282. |
[35] | LOU M, QI Y L, LI X R, et al. Aggregated pyramidattention network for mass segmentation in mammograms [J]. Multimedia Tools and Applications, 2021.https://doi.org/10.1007/s11042-021-10940-x. |
[36] | LOU M, QI Y L, MENG J, et al. DCANet: Dualcontextual affinity network for mass segmentation in whole mammograms [J]. Medical Physics, 2021, 48(8):4291-4303. |
[37] | SALEHI S S M, ERDOGMUS D, GHOLIPOUR A.Tversky loss function for image segmentation using3D fully convolutional deep networks [M]//Machinelearning in medical imaging. Cham: Springer, 2019:379-387. |
[38] | SUDRE C H, LI W Q, VERCAUTEREN T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations [M]//Deep learn-ing in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2017:240-248. |
[39] | PISANA F, HENZLER T, SCH ?NBERG S, et al.Noise reduction and functional maps image quality im-provement in dynamic CT perfusion using a new K-means clustering guided bilateral filter (KMGB) [J].Medical Physics, 2017, 44(7): 3464-3482. |
[40] | CHEN L C, PAPANDREOU G, KOKKINOS I, etal. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully con-nected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
[41] | C? I C? E K ?, ABDULKADIR A, LIENKAMP S S, etal. 3D U-net: Learning dense volumetric segmentationfrom sparse annotation [C]//Medical image computing and computer-assisted intervention - MICCAI 2016.Cham: Springer, 2016: 424-432. |
[1] | . 基于场端RGB-D相机阵列的室内停车场车辆定位系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
[2] | . 外参标定的激光-视觉-惯性里程计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
[3] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[4] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[5] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 638-648. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 437-451. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 452-462. |
[10] | SHEN Da (沈 达), HE Di (何 迪), LI Wen-hua (李文化), LIN Ying-pei (林英沛). An Improved Cyclostationary Feature Detection Based on the Selection of Optimal Parameter in Cognitive Radios[J]. 上海交通大学学报(英文版), 2012, 17(1): 1-007. |
[11] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform[J]. 上海交通大学学报(英文版), 2012, 17(1): 8-012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||