sa ›› 2018, Vol. 23 ›› Issue (1): 74-84.doi: 10.1007/s12204-018-1912-2
XU Yong1 (徐勇), TANG Qian2 (唐倩), HOU Linzao2 (候林早), LI Mian2* (李冕)
出版日期:
2018-02-01
发布日期:
2018-02-01
通讯作者:
LI Mian (李冕)
E-mail:mianli@sjtu.edu.cn
XU Yong1 (徐勇), TANG Qian2 (唐倩), HOU Linzao2 (候林早), LI Mian2* (李冕)
Online:
2018-02-01
Published:
2018-02-01
Contact:
LI Mian (李冕)
E-mail:mianli@sjtu.edu.cn
摘要: Performing arts and movies have become commercial products with high profit and great market potential. Previous research works have developed comprehensive models to forecast the demand for movies. However, they did not pay enough attention to the decision support for performing arts which is a special category unlike movies. For performing arts with high-dimensional categorical attributes and limit samples, determining ticket prices in different levels is still a challenge job faced by the producers and distributors. In terms of these difficulties, factorization machine (FM), which can handle huge sparse categorical attributes, is used in this work first. Adaptive stochastic gradient descent (ASGD) and Markov chain Monte Carlo (MCMC) are both explored to estimate the model parameters of FM. FM with ASGD (FM-ASGD) and FM with MCMC (FM-MCMC) both can achieve a better prediction accuracy, compared with a traditional algorithm. In addition, the multi-output model is proposed to determine the price in multiple price levels simultaneously, which avoids the trouble of the models’ repeating training. The results also confirm the prediction accuracy of the multi-output model, compared with those from the general single-output model.
中图分类号:
XU Yong1 (徐勇), TANG Qian2 (唐倩), HOU Linzao2 (候林早), LI Mian2* (李冕). Decision Model for Market of Performing Arts with Factorization Machine[J]. sa, 2018, 23(1): 74-84.
XU Yong1 (徐勇), TANG Qian2 (唐倩), HOU Linzao2 (候林早), LI Mian2* (李冕). Decision Model for Market of Performing Arts with Factorization Machine[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(1): 74-84.
[1] SHANKLIN W. What businesses can learn from themovies [J]. Business Horizons, 2002, 45(1): 23-28. [2] ELBERSE A, ELIASHBERG J. Demand and supplydynamics for sequentially released products ininternational markets: The case of motion pictures[J].Marketing Science, 2003, 22(3): 329-354. [3] SQUIRE J E. The movie business book [M]. New York:Simon and Schuster, 2004. [4] KIM T, HONG J, KANG P. Box office forecasting usingmachine learning algorithms based on SNS data[J]. International Journal of Forecasting, 2015, 31(2):364-390. [5] DELEN D, SHARDA R, KUMAR P. Movie forecastGuru: A Web-based DSS for Hollywood managers [J].Decision Support Systems, 2007, 43(4): 1151-1170. [6] AINSLIE A, DR`EZE X, ZUFRYDEN F. Modelingmovie life cycles and market share [J]. Marketing Science,2005, 24(3): 508-517. [7] LEE K J, CHANGW. Bayesian belief network for boxofficeperformance: A case study on Korean movies [J].Expert Systems with Applications, 2009, 36(1): 280-291. [8] ELIASHBERG J, SHUGAN S M. Film Critics: Influencersor predictors? [J]. Journal of Marketing, 1997,61(2): 68-78. [9] CHINTAGUNTA P K, GOPINATH S,VENKATARAMAN S. The effects of online userreviews on movie box office performance: Accountingfor sequential rollout and aggregation across localmarkets [J]. Marketing Science, 2010, 29(5): 944-957. [10] DUAN J, DING X, LIU T. A Gaussian copula regressionmodel for movie box-office revenues prediction [J].Science China, 2017, 60(9): 092103. [11] LEE Y, KIM S H, CHA K C. A generalized Bassmodel for predicting the sales patterns of motion pictureshaving seasonality and herd behavior [J]. Journalof Global Scholars of Marketing Science, 2012, 22(4):310-326. [12] ZHOU Y, ZHANG L, YI Z. Predicting movie box-officerevenues using deep neural networks [J]. Neural Computing& Applications, 2017(3): 1-11. [13] ZHANG L, LUO J, YANG S. Forecasting box officerevenue of movies with BP neural network [J]. ExpertSystems with Applications, 2009, 36(3): 6580-6587. [14] BAUMOL W J, BOWEN W G. Performing arts, theeconomic dilemma: A study of problems common totheater, opera, music and dance [M]. New York: GreggRevivals, 1993. [15] RENDLE S. Factorization machines [C]//IEEE InternationalConference on Data Mining. [s.l.]: IEEE,2010: 995-1000. [16] RENDLE S. Factorization machines with libFM [J].ACM Transactions on Intelligent Systems and Technology,2012, 3(3): 57. [17] RUDER S. An overview of gradient descent optimizationalgorithms [EB/OL]. (2017-09-19). [2016-01-09].http://sebastianruder.com/optimizing-gradient-descent/index.html. [18] RENDLE S. Learning recommender systems withadaptive regularization [C]//ACM International Conferenceon Web Search & Data Mining. Seattle, Washington:ACM, 2012: 133-142. [19] ANDRIEU C, FREITAS N D, DOUCET A, et al. AnIntroduction to MCMC for machine learning [J]. MachineLearning, 2003, 50(1/2): 5-43. [20] BESAG J. An introduction to Markov chain MonteCarlo methods [C]//Mathematical Foundations ofSpeech and Language Processing. New York: Springer,2004: 247-270. [21] RENDLE S. Social network and click-through predictionwith factorization machines [EB/OL]. (2017-09-19). http://kdd2012.sigkdd.org. [22] BORCHANI H, VARANDO G, BIELZA C, et al. Asurvey on multi-output regression [J]. WIREs DataMining and Knowledge Discovery, 2015, 5(5): 216-233. [23] ZHANG W, LIU X, DING Y, et al. Multi-output LSSVRmachine in extended feature space [C]//IEEEInternational Conference on Computational Intelligencefor Measurement Systems and Applications.[s.l.]: IEEE, 2012: 130-134. [24] BREIMAN L. Random forests [J]. Machine Learning,2001, 45(1): 5-32. |
[1] | 蒋祖华1, 周宏明2, 陶宁蓉3, 李柏鹤1. 基于知识的船舶曲面分段建造调度及应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 759-765. |
[2] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[3] | 姜锐1,朱瑞祥1,蔡萧萃1,苏虎2. 具有增强注意力的前景分割网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 360-369. |
[4] | 祝 楷, 熊柏青, 闫宏伟, 张永安, 李志辉, 李锡武, 刘红伟, 温 凯, 闫丽珍, . 辊道传送速度对大规格铝合金厚板应力分布及演变影响的数值模拟研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[15] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 461
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||