[1] EUGENIO P. Frequent premature ventricular contractions— An electrical link to cardiomyopathy [J]. Cardiologyin Review, 2015, 23: 168-172.
[2] BERTELS R A, HARTEVELD L M, FILIPPINI L H,et al. Left ventricular dysfunction is associated withfrequent premature ventricular complexes and asymptomaticventricular tachycardia in children [J]. EP Europace,2017, 19(4): 617-621.
[3] THANAPATAY D, SUWANSAROJ C, THANAWATTANDC. ECG beat classification method for ECGprintout with principle components analysis and supportvector machines [C]//2010 International Conferenceon Electronics and Information Engineering. Kyoto:IEEE, 2010: 72-75.
[4] KAYA Y, PHELIVAN H. Classification of prematureventricular contraction in ECG [J]. International Journalof Advanced Computer Science and Applications,2015, 6(7): 34-40.
[5] INAN O T, GIOVANGRANDI L, KOVACS G T A.Robust neural-network-based classification of prematureventricular contractions using wavelet transformand timing interval features [J]. IEEE Transactions onBiomedical Engineering, 2006, 53(12): 2507-2515.
[6] MAGLAVERAS N. ECG pattern recognition and classificationuing non-linear transformations and neuralnetworks: A review [J]. International Journal of MedicalInformatics, 1998, 52: 191-208.
[7] HUANHUAN M, YUE Z. Classification of electrocardiogramsignals with deep belief networks [C]//17thInternational Conference on Computational Scienceand Engineering, Chengdu: IEEE, 2014: 7-12.
[8] ZHOU F, JIN L, DONG J. Premature ventricular contractiondetection combining deep neural networks andrules inference [J]. Artificial Intelligence in Medicine,2017, 79: 42-51.
[9] CHRISTOV I, JEKOVA I, BORTOLAN G. Prematureventricular contraction classification by theKth nearest-neighbours rule [J]. Physiological Measurement,2005, 26: 123-130.
[10] RAHHALMMA, BAZI Y, ALHICHRIH, et al. Deeplearning approach for active classification of electrocardiogramsignals [J]. Information Sciences, 2016, 345:340-354.
[11] BORTOLAN G, JEKOVA I, CHRISTOV I. Comparisonof four methods for premature ventricular contractionand normal beat clustering [J]. Computers inCardiology, 2005, 32: 921-924.
[12] JIN L, DONG J. Ensemble deep learning for biomedicaltime series classification [J]. Computational Intelligenceand Neuroscience, 2016, 2016: 6212684.
[13] RAJPURKAR P, HANNUN A Y, HAGHPANAHIM, et al. Cardiologist-level arrhythmia detection withconvolutional neural networks [EB/OL]. (2017-07-06)[2017-09-25]. https://arxiv.org/pdf/1707.01836.pdf.
[14] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinkingthe inception architecture for computer vision[C]//2016 IEEE Conference on Computer Visionand Pattern Recognition (CVPR). Las Vegas, Nevada:IEEE, 2016: 2818-2826.
|