sa ›› 2018, Vol. 23 ›› Issue (1): 66-73.doi: 10.1007/s12204-018-1911-3
LIU Yixiua (刘宜修), HUANG Yujuanb (黄玉娟), WANG Jianyib (王健怡),LIU Lib (刘莉), LUO Jiajiaa* (罗家佳)
出版日期:
2018-02-01
发布日期:
2018-02-01
通讯作者:
LUO Jiajia(罗家佳)
E-mail:jiajia.luo@sjtu.edu.cn
LIU Yixiua (刘宜修), HUANG Yujuanb (黄玉娟), WANG Jianyib (王健怡),LIU Lib (刘莉), LUO Jiajiaa* (罗家佳)
Online:
2018-02-01
Published:
2018-02-01
Contact:
LUO Jiajia(罗家佳)
E-mail:jiajia.luo@sjtu.edu.cn
摘要: Premature ventricular contractions (PVCs) are abnormal heart beats that indicate potential heart diseases. Diagnosis of PVCs is made by physicians examining long recordings of electrocardiogram (ECG), which is onerous and time-consuming. In this study, deep learning was applied to develop models that can detect PVCs in children automatically. This computer-aided diagnosis model achieved high accuracy while sustained stable performance. It could save time and repeated efforts for physicians, enabling them to focus on more complicated tasks.This study is a first step toward children’s PVC auto-detection in clinics. Further study will improve the model’s performance with optimized structure and more data in different sources, while facing the challenges of the variety and uncertainty of children’s ECG with heart diseases.
中图分类号:
LIU Yixiua (刘宜修), HUANG Yujuanb (黄玉娟), WANG Jianyib (王健怡),LIU Lib (刘莉), LUO Jiaj. Detecting Premature Ventricular Contraction in Children with Deep Learning[J]. sa, 2018, 23(1): 66-73.
LIU Yixiua (刘宜修), HUANG Yujuanb (黄玉娟), WANG Jianyib (王健怡),LIU Lib (刘莉), LUO Jiajiaa* (罗家佳). Detecting Premature Ventricular Contraction in Children with Deep Learning[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(1): 66-73.
[1] EUGENIO P. Frequent premature ventricular contractions— An electrical link to cardiomyopathy [J]. Cardiologyin Review, 2015, 23: 168-172. [2] BERTELS R A, HARTEVELD L M, FILIPPINI L H,et al. Left ventricular dysfunction is associated withfrequent premature ventricular complexes and asymptomaticventricular tachycardia in children [J]. EP Europace,2017, 19(4): 617-621. [3] THANAPATAY D, SUWANSAROJ C, THANAWATTANDC. ECG beat classification method for ECGprintout with principle components analysis and supportvector machines [C]//2010 International Conferenceon Electronics and Information Engineering. Kyoto:IEEE, 2010: 72-75. [4] KAYA Y, PHELIVAN H. Classification of prematureventricular contraction in ECG [J]. International Journalof Advanced Computer Science and Applications,2015, 6(7): 34-40. [5] INAN O T, GIOVANGRANDI L, KOVACS G T A.Robust neural-network-based classification of prematureventricular contractions using wavelet transformand timing interval features [J]. IEEE Transactions onBiomedical Engineering, 2006, 53(12): 2507-2515. [6] MAGLAVERAS N. ECG pattern recognition and classificationuing non-linear transformations and neuralnetworks: A review [J]. International Journal of MedicalInformatics, 1998, 52: 191-208. [7] HUANHUAN M, YUE Z. Classification of electrocardiogramsignals with deep belief networks [C]//17thInternational Conference on Computational Scienceand Engineering, Chengdu: IEEE, 2014: 7-12. [8] ZHOU F, JIN L, DONG J. Premature ventricular contractiondetection combining deep neural networks andrules inference [J]. Artificial Intelligence in Medicine,2017, 79: 42-51. [9] CHRISTOV I, JEKOVA I, BORTOLAN G. Prematureventricular contraction classification by theKth nearest-neighbours rule [J]. Physiological Measurement,2005, 26: 123-130. [10] RAHHALMMA, BAZI Y, ALHICHRIH, et al. Deeplearning approach for active classification of electrocardiogramsignals [J]. Information Sciences, 2016, 345:340-354. [11] BORTOLAN G, JEKOVA I, CHRISTOV I. Comparisonof four methods for premature ventricular contractionand normal beat clustering [J]. Computers inCardiology, 2005, 32: 921-924. [12] JIN L, DONG J. Ensemble deep learning for biomedicaltime series classification [J]. Computational Intelligenceand Neuroscience, 2016, 2016: 6212684. [13] RAJPURKAR P, HANNUN A Y, HAGHPANAHIM, et al. Cardiologist-level arrhythmia detection withconvolutional neural networks [EB/OL]. (2017-07-06)[2017-09-25]. https://arxiv.org/pdf/1707.01836.pdf. [14] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinkingthe inception architecture for computer vision[C]//2016 IEEE Conference on Computer Visionand Pattern Recognition (CVPR). Las Vegas, Nevada:IEEE, 2016: 2818-2826. |
[1] | LI Guanyu (李冠玉), ZHANG Fengqin (张凤芹), LIU Qiegen (刘且根) . Distribution-Transformed Network for Impulse Noise Removal[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 543-553. |
[2] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[3] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
[4] | LI Zhiqiang, BAO Jinsong, LIU Tianyuan, WANG Jiacheng . Judging the Normativity of PAF Based on TFN and NAN[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 569-577. |
[5] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojua. Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[6] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊. Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[7] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking[J]. sa, 2018, 23(3): 360-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 627
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||