[1] SHANKLIN W. What businesses can learn from themovies [J]. Business Horizons, 2002, 45(1): 23-28.
[2] ELBERSE A, ELIASHBERG J. Demand and supplydynamics for sequentially released products ininternational markets: The case of motion pictures[J].Marketing Science, 2003, 22(3): 329-354.
[3] SQUIRE J E. The movie business book [M]. New York:Simon and Schuster, 2004.
[4] KIM T, HONG J, KANG P. Box office forecasting usingmachine learning algorithms based on SNS data[J]. International Journal of Forecasting, 2015, 31(2):364-390.
[5] DELEN D, SHARDA R, KUMAR P. Movie forecastGuru: A Web-based DSS for Hollywood managers [J].Decision Support Systems, 2007, 43(4): 1151-1170.
[6] AINSLIE A, DR`EZE X, ZUFRYDEN F. Modelingmovie life cycles and market share [J]. Marketing Science,2005, 24(3): 508-517.
[7] LEE K J, CHANGW. Bayesian belief network for boxofficeperformance: A case study on Korean movies [J].Expert Systems with Applications, 2009, 36(1): 280-291.
[8] ELIASHBERG J, SHUGAN S M. Film Critics: Influencersor predictors? [J]. Journal of Marketing, 1997,61(2): 68-78.
[9] CHINTAGUNTA P K, GOPINATH S,VENKATARAMAN S. The effects of online userreviews on movie box office performance: Accountingfor sequential rollout and aggregation across localmarkets [J]. Marketing Science, 2010, 29(5): 944-957.
[10] DUAN J, DING X, LIU T. A Gaussian copula regressionmodel for movie box-office revenues prediction [J].Science China, 2017, 60(9): 092103.
[11] LEE Y, KIM S H, CHA K C. A generalized Bassmodel for predicting the sales patterns of motion pictureshaving seasonality and herd behavior [J]. Journalof Global Scholars of Marketing Science, 2012, 22(4):310-326.
[12] ZHOU Y, ZHANG L, YI Z. Predicting movie box-officerevenues using deep neural networks [J]. Neural Computing& Applications, 2017(3): 1-11.
[13] ZHANG L, LUO J, YANG S. Forecasting box officerevenue of movies with BP neural network [J]. ExpertSystems with Applications, 2009, 36(3): 6580-6587.
[14] BAUMOL W J, BOWEN W G. Performing arts, theeconomic dilemma: A study of problems common totheater, opera, music and dance [M]. New York: GreggRevivals, 1993.
[15] RENDLE S. Factorization machines [C]//IEEE InternationalConference on Data Mining. [s.l.]: IEEE,2010: 995-1000.
[16] RENDLE S. Factorization machines with libFM [J].ACM Transactions on Intelligent Systems and Technology,2012, 3(3): 57.
[17] RUDER S. An overview of gradient descent optimizationalgorithms [EB/OL]. (2017-09-19). [2016-01-09].http://sebastianruder.com/optimizing-gradient-descent/index.html.
[18] RENDLE S. Learning recommender systems withadaptive regularization [C]//ACM International Conferenceon Web Search & Data Mining. Seattle, Washington:ACM, 2012: 133-142.
[19] ANDRIEU C, FREITAS N D, DOUCET A, et al. AnIntroduction to MCMC for machine learning [J]. MachineLearning, 2003, 50(1/2): 5-43.
[20] BESAG J. An introduction to Markov chain MonteCarlo methods [C]//Mathematical Foundations ofSpeech and Language Processing. New York: Springer,2004: 247-270.
[21] RENDLE S. Social network and click-through predictionwith factorization machines [EB/OL]. (2017-09-19). http://kdd2012.sigkdd.org.
[22] BORCHANI H, VARANDO G, BIELZA C, et al. Asurvey on multi-output regression [J]. WIREs DataMining and Knowledge Discovery, 2015, 5(5): 216-233.
[23] ZHANG W, LIU X, DING Y, et al. Multi-output LSSVRmachine in extended feature space [C]//IEEEInternational Conference on Computational Intelligencefor Measurement Systems and Applications.[s.l.]: IEEE, 2012: 130-134.
[24] BREIMAN L. Random forests [J]. Machine Learning,2001, 45(1): 5-32.
|