J Shanghai Jiaotong Univ Sci ›› 2021, Vol. 26 ›› Issue (5): 577-586.doi: 10.1007/s12204-021-2347-8
收稿日期:
2020-11-30
出版日期:
2021-10-28
发布日期:
2021-10-28
通讯作者:
ZOU Yue1? (邹 悦)?E-mail: zouyue1024@163.com,YANG Xubo (杨旭波), yangxubo@sjtu.edu.cn
ZOU Yue1 (邹 悦), LI Lin2 (李 霖), YANG Xubo1 (杨旭波)
Received:
2020-11-30
Online:
2021-10-28
Published:
2021-10-28
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586.
ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586.
[1] | WOESLER R. Fast extraction of tra?c parame-ters and reidenti?cation of vehicles from video data [C]//Proceedings of the 2003 IEEE International Con-ference on Intelligent Transportation Systems. Shang-hai: IEEE, 2003: 774-778. |
[2] | SHAN Y, SAWHNEY H S, KUMAR R. Vehicle identi-?cation between non-overlapping cameras without di-rect feature matching [C]//Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: |
37 | 8- 385. |
[3] | ZHENG Q, LIANG C, FANG W H, et al. Car re-identi?cation from large scale images using semantic attributes [C]//2015 IEEE 17th International Work-shop on Multimedia Signal Processing. Xiamen: IEEE, 2015: 1-5. |
[4] | FERIS R S, SIDDIQUIE B, PETTERSON J, et al. Large-scale vehicle detection, indexing, and search in urban surveillance videos [J]. IEEE Transactions on Multimedia, 2012, 14(1): 28-42. |
[5] | ZAPLETAL D, HEROUT A. Vehicle re-identi?cation for automatic video tra?c surveillance [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, NV: IEEE, 2016: 1568-1574. |
[6] | LIU X C, LIU W, MEI T, et al. A deep learning-based approach to progressive vehicle re-identi?cation for ur-ban surveillance[C]//European Conference on Com-puter Vision (ECCV 2016 ). Cham: Springer, 2016: |
86 | 9- 884. |
[7] | LIU X C, LIU W, MA H D, et al. Large-scale vehicle re-identi?cation in urban surveillance videos [C]//2016 IEEE International Conference on Multimedia and Expo. Seattle, WA: IEEE, 2016: 1-6. |
[8] | LIU X C, LIU W, MEI T, et al. PROVID: Progressive and multimodal vehicle reidenti?cation for large-scale urban surveillance [J]. IEEE Transactions on Multime-dia, 2018, 20(3): 645-658. |
[9] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston, MA: IEEE, 2015: 1-9. |
[10] | WANG Z D, TANG L M, LIU X H, et al. Orienta-tion invariant feature embedding and spatial temporal regularization for vehicle Re-identi?cation [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 379-387. |
[11] | ZHOU Y, LIU L, SHAO L. Vehicle Re-identi?cation by deep hidden multi-view inference [J]. IEEE Trans-actions on Image Processing, 2018, 27(7): 3275-3287. |
[12] | ZHENG Z D, RUAN T, WEI Y C, et al. Ve-hicleNet: Learning robust visual representation for vehicle Re-identi?cation [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/2004.06305.pdf. [13] ZHANG X Y, ZHANG R F, CAO J W, et al. Part-guided attention learning for vehi-cle instance retrieval [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/1909.06023v4.pdf. |
[14] | KHORRAMSHAHI P, KUMAR A, PERI N, et al. A dual-path model with adaptive attention for vehicle Re-identi?cation [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6131-6140. |
[15] | CHEN T S, LIU C T, WU C W, et al. Orientation-aware vehicle re-identi?cation with semantics-guided part attention network [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/2008.11423.pdf. |
[16] | HU J, SHEN L, SUN G. Squeeze-and-excitation net-works [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 7132-7141. |
[17] | SHEN Y T, XIAO T, LI H S, et al. Learning deep neural networks for vehicle Re-ID with visual-spatio-temporal path proposals [C]//2017 IEEE Interna-tional Conference on Computer Vision. Venice: IEEE, 2017: 1918-1927. |
[18] | ZHONG Z, ZHENG L, KANG G L, et al. Ran-dom erasing data augmentation [J]. Proceedings of the AAAI Conference on Arti?cial Intelligence, 2020, 34(7): 13001-13008. |
[19] | HE KM, ZHANGX Y,REN S Q,et al. Deep residual learning for image recognition [C]//2016 IEEE Con-ference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 770-778. |
[20] | LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identi?cation [C]//2019 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition Workshops.LongBeach, CA: IEEE, 2019: 1487-1495. |
[21] | HE L X, LIAO X Y, LIU W, et al. FastReID: A pytorch toolbox for real-world person re-identi?cation [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/ 2006.02631.pdf. |
[22] | PANXG, LUOP,SHIJP,etal. Two atonce: Enhancing learning and generalization capacities via IBN-net[C]//Proceedings of the European Conference on Computer Vision (ECCV ). Munich: [s.n.], 2018: |
46 | 4- 479. |
[23] | ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: The missing ingredi-ent for fast stylization [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/1607.08022.pdf. |
[24] | IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [EB/OL]. [2020-11-30]. https://arxiv.org/pdf/1502.03167.pdf. |
[25] | WOO S, PARK J, LEE J Y, et al. CBAM: Convolu-tional block attention module [M]//Computer vision |
– ECCV 2018. Cham: Springer International Publish-ing, 2018: 3-19. | |
[26] | WANG F, JIANG M Q, QIAN C, et al. Residual atten-tion network for image classi?cation [C]//2017 IEEEConference on Computer Vision and Pattern Recogni-tion. Honolulu, HI: IEEE, 2017: 6450-6458. [27] HAAS R, HOFFMANN M. Chordless paths through three vertices [J]. Theoretical Computer Science, 2006, 351(3): 360-371. |
[28] | LIU H Y, TIAN Y H, WANG Y W, et al. Deep relative distance learning: Tell the di?erence between similar vehicles [C]//2016 IEEE Conference on Computer Vi-sion and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 2167-2175. |
[29] | GUO H Y, ZHAO C Y, LIU Z W, et al. Learning coarse-to-?ne structured feature embedding for vehi-cle re-identi?cation[C]//Thirty-Second AAAI Confer-ence on Arti?cial Intelligence. New Orleans, Louisiana: AAAI, 2018. |
[30] | LOU Y H, BAI Y, LIU J, et al. VERI-wild: A large dataset and a new method for vehicle re-identi?cation in the wild [C]//2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition.LongBeach, CA: IEEE, 2019: 3230-3238. |
[31] | ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identi?cation with k-reciprocal encoding [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 3652-3661. [32] BAI S, BAI X. Sparse contextual activation for e?-cient visual re-ranking [J]. IEEE Transactions on Im-age Processing, 2016, 25(3): 1056-1069. |
[33] | SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identi?cation with expanded cross neighborhood Re-ranking [C]//2018 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 420-429. |
[34] | GUO R P, LI C G, LI Y H, et al. Density-adaptive kernel based re-ranking for person re-identi?cation [C]//2018 24th International Conference on Pattern Recognition. Beijing: IEEE, 2018: 982-987. |
[35] | HE B, LI J, ZHAO Y F, et al. Part-regularized near-duplicate vehicle re-identi?cation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 3992-4000. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[5] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[6] | XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305. |
[7] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
[8] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[9] | LIU Min, DENG Bin, TANG Ying, WU Minghu, WANG Juan . Low-Cost Approach for Improving Video Transmission Efficiency in WVSN[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 600-605. |
[10] | WANG Yuzong (王毓综), DENG Fei (邓飞), ZHAO Daxu (赵大旭), YE Jiaying (叶佳英), WANG Peixin. Monocular Dynamic Machine Vision-Based Pearl Shape Detection[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 654-662. |
[11] | LI Dan (李丹), NIU Zhongbin (牛中彬), PENG Dongxu (彭冬旭) . Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 663-670. |
[12] | XUE Ankang (薛安康), LI Fan* (李凡), XIONG Yin (熊吟). Automatic Identification of Butterfly Species Based on Gray-Level Co-occurrence Matrix Features of Image Block[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 220-225. |
[13] | ZHOU Jingmei *(周经美), ZHAO Xiangmo (赵祥模), CHENG Xin (程鑫), XU Zhigang (徐志刚), ZHAO. Vehicle Ego-Localization Based on Streetscape Image Database Under Blind Area of Global Positioning System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 122-129. |
[14] | MA Jin (马进), XUE Teng (薛腾), SHAO Quanquan (邵全全), HU Jie (胡洁), WANG Weiming (王伟明. Research on Spatially Adaptive High-Order Total Variation Model for Weak Fluorescence Image Restoration[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 1-7. |
[15] | ZHANG Yanghao (张洋豪), ZENG Shaoning (曾少宁), ZENG Wei (曾威), GOU Jianping (苟建平). GNN-CRC: Discriminative Collaborative Representation-Based Classification via Gabor Wavelet Transformation and Nearest Neighbor [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 657-665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||