J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 815-824.doi: 10.1007/s12204-024-2704-5
收稿日期:
2023-07-18
接受日期:
2023-08-05
出版日期:
2025-07-31
发布日期:
2025-07-31
尹茂,李笑
Received:
2023-07-18
Accepted:
2023-08-05
Online:
2025-07-31
Published:
2025-07-31
摘要: 针对现有尿道阀可靠性分析计算效率低的问题,提出一种基于主动学习Kriging(active learning Kriging, AK)代理模型与子集模拟(subset simulation, SS)算法并结合故障树分析(fault tree analysis, FTA)的无线传能尿道阀高效可靠性分析方法,即FTA-AK-SS。根据FTA原理,建立无线传能尿道阀故障树模型,确定其最小割集及底事件,进而确定影响其可靠性的随机变量;利用U学习函数选择性添加随机变量样本点更新初始Kriging代理模型;同时结合SS算法,实现无线传能尿道阀的可靠性与可靠性灵敏度分析。仿真结果表明:与传统的蒙特卡罗模拟(MCS)和FTA-Kriging-SS方法相比,所提方法在保证计算精度的前提下,显著提高了无线传能尿道阀可靠性计算效率;橡胶垫老化、接收线圈腐蚀与位置偏移对无线传能尿道阀可靠性影响显著。本研究可为实现尿道阀高效可靠性计算分析提供一种新思路。
中图分类号:
. 基于 FTA-AK-SS 的无线传能尿道阀可靠性分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 815-824.
Yin Mao, Li Xiao. Reliability Research of Wireless Energy Transmitting Urethral Valve Based on FTA-AK-SS[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 815-824.
[1] LIAO L M. Urodynamics[M]. Beijing: Science Press, 2019 (in Chinese). [2] MARZIALE L, LUCARINI G, MAZZOCCHI T, et al. Comparative analysis of occlusion methods for artificial sphincters [J]. Artificial Organs, 2020, 44(9): 995-1005. [3] MARZIALE L, LUCARINI G, MAZZOCCHI T, et al. Artificial sphincters to manage urinary incontinence: A review [J]. Artificial Organs, 2018, 42(9): E215-E233. [4] MAZZOCCHI T, RICOTTI L, PINZI N, et al. Magnetically controlled endourethral artificial urinary sphincter [J]. Annals of Biomedical Engineering, 2017, 45(5): 1181-1193. [5] LI Y P, LI X A, ZHANG R, et al. Modeling and performance analysis for the urethral valve used to manage severe urinary incontinence [J]. Journal of Mechanics in Medicine and Biology, 2020, 20(8): 1950013. [6] ZENG Z X. Reliability analysis of urethral valve driven by SMA based on FMECA and FTA [D]. Guangzhou: Guangdong University of Technology, 2021 (in Chinese). [7] BANAKHAR M, ALJEHANI A, ABDULSALAM A, et al. Posterior urethral valve new scoring system: Reliability and reproducibility [J]. Neurourology and Urodynamics, 2019, 38: S276-S276. [8] DELGADO-MIGUEL C, MUNOZ-SERRANO A, AMESTY V, et al. Artificial urinary sphincter in congenital neuropathic bladder: Very long-term outcomes [J]. International Journal of Urology, 2022, 29(7): 692-697. [9] SINGH J, SMITH T G III, WESTNEY O L. Artificial urinary sphincter considerations in men with prior inflatable penile prosthesis placement [J]. The Journal of Sexual Medicine, 2022, 19(10): 1495-1498. [10] BIARDEAU X, HACHED S, LOUTOCHIN O, et al. Montreal electronic artificial urinary sphincters: Our futuristic alternatives to the AMS800™ [J]. Canadian Urological Association Journal, 2017, 11(10): E396-E404. [11] TANAKA M, WANG F, ABE K, et al. A closed-loop transcutaneous power transmission system with thermal control for artificial urethral valve driven by SMA actuator [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8/9): 779-786. [12] LI X, GUAN T, LIU C B, et al. Modeling and simulation of urethra valve of bladder power pump [J]. Journal of Mechanics, 2014, 30(3): 255-264. [13] HU Z, LI X, GUAN T. A study on performance and reliability of urethral valve driven by ultrasonic-vaporized steam [J]. International Journal of Automation and Computing, 2020, 17(5): 752-762. [14] XU C L. Research on reliability analysis method of structural system based on the Kriging model [D]. Harbin: Harbin Engineering University, 2021 (in Chinese). [15] THAPA A, ROY A, CHAKRABORTY S. Reliability analysis of underground tunnel by a novel adaptive Kriging based metamodeling approach [J]. Probabilistic Engineering Mechanics, 2022, 70: 103351. [16] YANG Z, PAK U, KWON C, et al. A reliability-based robust optimization design for the drum brake using adaptive Kriging surrogate model [J]. Quality and Reliability Engineering International, 2023, 39(1): 454-471. [17] LI N, HOU B W, DU X L, et al. Seismic reliability analysis of buried segmented pipelines based on active learning Kriging model [J]. Journal of Harbin Institute of Technology, 2021, 53(10): 112-121 (in Chinese). [18] TANG H S, GUO X Y, XUE S T. Time-varying reliability analysis of nonlinear stochastic dynamic systems based on generalized subset simulation and adaptive Kriging model [J]. Journal of Vibration and Shock, 2021, 40(21): 47-54 (in Chinese). [19] ZHOU C C, LI C, ZHANG H L, et al. Reliability and sensitivity analysis of composite structures by an adaptive Kriging based approach [J]. Composite Structures, 2021, 278: 114682. [20] ZHOU C C, CHANG Q, ZHOU C P, et al. Fault tree analysis of an aircraft flap system based on a non-probability model [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(6): 636-642 (in Chinese). [21] QIN D T, XIE L Y. Modern mechanical design manual[M]. Beijing: Chemical Industry Press, 2019 (in Chinese). [22] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation [J]. Structural Safety, 2011, 33(2): 145-154. [23] AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation [J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277. [24] MORIO J. Global and local sensitivity analysis methods for a physical system [J]. European Journal of Physics, 2011, 32(6): 1577-1583. [25] WU Y T, MOHANTY S. Variable screening and ranking using sampling-based sensitivity measures [J]. Reliability Engineering & System Safety, 2006, 91(6): 634-647. [26] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution [J]. Structural Safety, 2012, 38: 40-47. [27] FANG X, YAN Z, WANG H, et al. A shared energy storage optimal operation method considering the risk of probabilistic voltage unbalance factor limit violation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 827-839 (in Chinese). [28] JIANG C, QIU H B, YANG Z, et al. A gene |
[1] | 李靖豪, 李然, 华浩, 黄文焘, 高飞, 邰能灵. 电动飞机轻量化推进系统可靠性分配方法[J]. 上海交通大学学报, 2025, 59(6): 867-876. |
[2] | 李向哲, 梁刚, 郑小梅, 徐聪聪, 许金泉. 基于冲击功离散性的曲轴早期疲劳失效评估方法[J]. 上海交通大学学报, 2025, 59(1): 111-120. |
[3] | 叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚. 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024, 58(1): 30-39. |
[4] | 李士刚, 王坤云, 袁烨, 诸戈, 王欣. 复杂装备系统任务可靠性在役考核评估方法[J]. 空天防御, 2023, 6(1): 23-28. |
[5] | 廖欣, 朱建华, 卞付国, 李克勇. 利用“三再”方法提升导弹武器装备可靠性的研究与实践[J]. 空天防御, 2023, 6(1): 11-16. |
[6] | 陈守芳, 李健, 熊莉芳, 袁军社. 可重复使用发动机管路连接与密封可靠性工作思考[J]. 空天防御, 2023, 6(1): 6-10. |
[7] | 翟玮昊, 龚敏浩, 林名润, 匡婷玉, 文珊珊. 基于主动学习的Kriging模型的可靠性分析[J]. 空天防御, 2023, 6(1): 1-5. |
[8] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[9] | 倪何, 覃海波, 郑奕杨. 考虑给水泄漏的锅炉升负荷仿真及其可靠性[J]. 上海交通大学学报, 2021, 55(4): 444-454. |
[10] | 高英铭, 陈震, 张秀芳, 潘尔顺. 基于随机流网络与Markov过程的制造系统可靠性建模及维护优化[J]. 上海交通大学学报, 2021, 55(3): 229-235. |
[11] | 许显杨,陈璐. 考虑设备可靠性与能耗的平行机调度[J]. 上海交通大学学报, 2020, 54(3): 247-255. |
[12] | 高魏华, 吕广强, 曹鲁光, 丁小芩, 李烽. 软硬件综合FMEA在弹载嵌入式软件中的应用[J]. 空天防御, 2020, 3(1): 10-16. |
[13] | 吴礼银,许标,张庆,文宾双. 降额设计在核电厂安全级DCS可靠性分析中的研究[J]. 上海交通大学学报, 2019, 53(Sup.1): 98-103. |
[14] | 倪安宁1,刘晏尘1,崔毓伟1,卢军莉2. 评价公交行程时间可靠性价值的Mixed Logit模型[J]. 上海交通大学学报(自然版), 2019, 53(2): 146-152. |
[15] | 龙周, 陈松坤, 王德禹. 基于SMOTE算法的船舶结构可靠性优化设计[J]. 上海交通大学学报, 2019, 53(1): 26-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||