上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (1): 111-120.doi: 10.16183/j.cnki.jsjtu.2023.203
收稿日期:
2023-05-22
修回日期:
2023-07-18
接受日期:
2023-08-09
出版日期:
2025-01-28
发布日期:
2025-02-06
通讯作者:
许金泉,教授,博士生导师,电话(Tel.):021-64473073;E-mail: 作者简介:
李向哲(1993—),博士生,从事材料强度与疲劳可靠性的研究.
基金资助:
LI Xiangzhe1, LIANG Gang2, ZHENG Xiaomei3, XU Congcong2, XU Jinquan1()
Received:
2023-05-22
Revised:
2023-07-18
Accepted:
2023-08-09
Online:
2025-01-28
Published:
2025-02-06
摘要:
考虑实际材料强度寿命特性的离散性,提出了一种用于评估曲轴早期疲劳失效的方法.材料强度寿命离散性的微观机理在于材料内部的微观组织结构(包括微观缺陷)分布的不均匀性,这可以用初始损伤的概率分布来统一表征.同种牌号的合金,其强度寿命特性的中值基本一致,但离散范围则会有很大差别,必须通过足够的取样试验才能确定.对于由34CrNi3MoA合金制成的某柴油发动机曲轴锻件,由冲击取样试验的冲击功离散性估算了疲劳极限的离散性,由结构疲劳试验确定了疲劳极限概率分布的均值.传统设计手册所推荐的安全系数只是暗中假定了材料的某种离散性,本研究给出考虑材料实际离散性的安全系数与可靠性间的定量关系.当实际使用的材料不满足规定的可靠性要求时,曲轴就易发生早期疲劳失效.
中图分类号:
李向哲, 梁刚, 郑小梅, 徐聪聪, 许金泉. 基于冲击功离散性的曲轴早期疲劳失效评估方法[J]. 上海交通大学学报, 2025, 59(1): 111-120.
LI Xiangzhe, LIANG Gang, ZHENG Xiaomei, XU Congcong, XU Jinquan. Assessment Method for Early Fatigue Failure of Crankshaft Based on Dispersion of Impact Energy[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 111-120.
[1] | VIZENTIN G, VUKELIC G, MURAWSKI L, et al. Marine propulsion system failures—A review[J]. Journal of Marine Science and Engineering, 2020, 8: 662. |
[2] | ZHOU H, WEI P, LIU H, et al. Roles of microstructure, inclusion, and surface roughness on rolling contact fatigue of a wind turbine gear[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7): 1368-1383. |
[3] | ALIAKBARI K, NEJAD R M, TOROQ S K P, et al. Assessment of unusual failure in crankshaft of heavy-duty truck engine[J]. Engineering Failure Analysis, 2022, 134: 106085. |
[4] | ZERBST U, KLINGER C. Material defects as cause for the fatigue failure of metallic components[J]. International Journal of Fatigue, 2019, 127: 312-323. |
[5] |
张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535.
doi: 10.16183/j.cnki.jsjtu.2020.095 |
ZHANG Songlin, MA Dongliang, WANG Deyu. Method for plate crack damage detection based on long short-term memory neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 527-535. | |
[6] | 王佳良, 魏大盛, 王延荣, 等. 含缺陷轮盘失效概率分析流程与数值模拟[J]. 推进技术, 2019, 40(11): 2562-2570. |
WANG Jialiang, WEI Dasheng, WANG Yanrong, et al. Analysis procedure and numerical simulation of failure probability of turbine disk caused by defects[J]. Journal of Propulsion Technology, 2019, 40(11): 2562-2570. | |
[7] |
轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51.
doi: 10.3901/JME.2021.06.026 |
XUAN Fuzhen, ZHU Mingliang, WANG Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51.
doi: 10.3901/JME.2021.06.026 |
|
[8] | 许金泉. 材料强度学[M]. 上海: 上海交通大学出版社, 2009. |
XU Jinquan. Theory on the strength of materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2009. | |
[9] | CUI X, ZHANG S, WANG Z Y, et al. Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting[J]. Materials Science & Engineering: A, 2022, 845: 143215. |
[10] | 赵少汴. 抗疲劳设计手册[M]. 北京: 机械工业出版社, 2015. |
ZHAO Shaobian. Anti-fatigue design manual[M]. Beijing: China Machine Press, 2015. | |
[11] | GROTE K H, ANTONSSON E K. Handbook of mechanical engineering[M]. Berlin, Germany: Springer, 2009. |
[12] | 黄朝晖, 袁奇, 张弘斌, 等. 某型火箭发动机涡轮转子流热固耦合强度及疲劳寿命分析[J]. 西安交通大学学报, 2022, 56(8): 73-84. |
HUANG Chaohui, YUAN Qi, ZHANG Hongbin, et al. Analysis of fluid-thermal-solid coupling strength and fatigue life of a certain rocket engine turbine rotor[J]. Journal of Xi’an Jiaotong University, 2022, 56(8): 73-84. | |
[13] | VAARA J, KUNNARI A, FRONDELIUS T. Literature review of fatigue assessment methods in residual stressed state[J]. Engineering Failure Analysis, 2020, 110: 104379. |
[14] | SOLA J F, ALINEJAD F, RAHIMIDEHGOLAN F, et al. Fatigue life assessment of crankshaft with increased horsepower[J]. International Journal of Structural Integrity, 2019, 10: 13-24. |
[15] |
丁然, 李强. 基于损伤累积模型的可靠度保守估计方法[J]. 上海交通大学学报, 2019, 53(10): 1225-1229.
doi: 10.16183/j.cnki.jsjtu.2019.10.012 |
DING Ran, LI Qiang. Method in conservative estimation of reliability based on damage accumulation model[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1225-1229. | |
[16] |
韦益夫, KAWAMURA Y, 王德禹. 改进移动最小二乘法及其在结构可靠性分析中的应用[J]. 上海交通大学学报, 2018, 52(4): 455-460.
doi: 10.16183/j.cnki.jsjtu.2018.04.010 |
WEI Yifu, KAWAMURA Y, WANG Deyu. An improved moving least square method and application in structural reliability analysis[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 455-460. | |
[17] | LUO C, KESHTEGAR B, ZHU S P, et al. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114218. |
[18] |
段红燕, 唐国鑫, 盛捷, 等. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808.
doi: 10.16183/j.cnki.jsjtu.2021.051 |
DUAN Hongyan, TANG Guoxin, SHENG Jie, et al. A novel prediction model for fatigue strength[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 801-808. | |
[19] | 苏霞. ADB610钢力学性能的可靠性研究[D]. 昆明: 昆明理工大学, 2009. |
SU Xia. Reliability study on mechanical property of ADB610 steel[D]. Kunming: Kunming University of Science and Technology, 2009. | |
[20] | LI W, YU Y, LI X, et al. Quantitative characterization of material uniformity and fatigue life reliability based on the initial damage discreteness[J]. International Journal of Fatigue, 2023, 167: 107382. |
[21] | LARSEN R J, MARX M L. An introduction to mathematical statistics[M]. Hoboken, NJ, USA: Prentice Hall, 2005. |
[22] | 中华人民共和国国家发展和改革委员会. 大型合金结构钢锻件技术条件:JB/T 6396—2006[S]. 北京: 机械工业出版社, 2006. |
National Development and Reform Commission of the People’s Republic of China. Specification for the heavy alloy structural steel forgings: JB/T 6396—2006[S]. Beijing: China Machine Press, 2006. | |
[23] | 中华人民共和国工业和信息化部. 中速柴油机整体曲轴钢锻件技术条件: CB/T 4313—2013[S]. 北京: 中国船舶工业综合技术经济研究院, 2014. |
Ministry of Industry and Information Technology of the People’s Republic of China. Specification of solid crankshaft forgings for median speed diesel engine: CB/T 4313—2013[S]. Beijing: China Institute of Marine Technology and Economy, 2014. | |
[24] | LI H F, DUAN Q Q, ZHANG P, et al. The quantitative relationship between fracture toughness and impact toughness in high-strength steels[J]. Engineering Fracture Mechanics, 2019, 211: 362-370. |
[25] | CHAOUADI R, GERARD R. Development of a method for extracting fracture toughness from instrumented Charpy impact tests in the ductile and transition regimes[J]. Theoretical and Applied Fracture Mechanics, 2021, 115: 103080. |
[26] | WALLIN K. Critical assessment of the Rolfe-Novak CVN-KIC upper shelf correlation[J]. Engineering Fracture Mechanics, 2021, 258: 108117. |
[27] | 王自强, 陈少华. 高等断裂力学[M]. 北京: 科学出版社, 2009. |
WANG Ziqiang, CHEN Shaohua. Advanced fracture mechanics[M]. Beijing: Science Press, 2009. | |
[28] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料夏比摆锤冲击试验方法: GB/T 229—2020[S]. 北京: 中国标准出版社, 2020. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials-Charpy pendulum impact test method: GB/T 229—2020[S]. Beijing: Standards Press of China, 2020. | |
[29] | 中国船级社. 钢质海船入级规范[S]. 北京: 人民交通出版社, 2018. |
China Classification Society. Rules for classification of sea-going steel ships[S]. Beijing: China Communications Press, 2018. |
[1] | 叶伦, 欧阳旭, 姚建刚, 杨胜杰, 尹骏刚. 考虑多重不确定性因素的可靠性指标计算与备用容量优化[J]. 上海交通大学学报, 2024, 58(1): 30-39. |
[2] | 李士刚, 王坤云, 袁烨, 诸戈, 王欣. 复杂装备系统任务可靠性在役考核评估方法[J]. 空天防御, 2023, 6(1): 23-28. |
[3] | 廖欣, 朱建华, 卞付国, 李克勇. 利用“三再”方法提升导弹武器装备可靠性的研究与实践[J]. 空天防御, 2023, 6(1): 11-16. |
[4] | 陈守芳, 李健, 熊莉芳, 袁军社. 可重复使用发动机管路连接与密封可靠性工作思考[J]. 空天防御, 2023, 6(1): 6-10. |
[5] | 翟玮昊, 龚敏浩, 林名润, 匡婷玉, 文珊珊. 基于主动学习的Kriging模型的可靠性分析[J]. 空天防御, 2023, 6(1): 1-5. |
[6] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[7] | 倪何, 覃海波, 郑奕杨. 考虑给水泄漏的锅炉升负荷仿真及其可靠性[J]. 上海交通大学学报, 2021, 55(4): 444-454. |
[8] | 高英铭, 陈震, 张秀芳, 潘尔顺. 基于随机流网络与Markov过程的制造系统可靠性建模及维护优化[J]. 上海交通大学学报, 2021, 55(3): 229-235. |
[9] | 许显杨,陈璐. 考虑设备可靠性与能耗的平行机调度[J]. 上海交通大学学报, 2020, 54(3): 247-255. |
[10] | 高魏华, 吕广强, 曹鲁光, 丁小芩, 李烽. 软硬件综合FMEA在弹载嵌入式软件中的应用[J]. 空天防御, 2020, 3(1): 10-16. |
[11] | 吴礼银,许标,张庆,文宾双. 降额设计在核电厂安全级DCS可靠性分析中的研究[J]. 上海交通大学学报, 2019, 53(Sup.1): 98-103. |
[12] | 倪安宁1,刘晏尘1,崔毓伟1,卢军莉2. 评价公交行程时间可靠性价值的Mixed Logit模型[J]. 上海交通大学学报(自然版), 2019, 53(2): 146-152. |
[13] | 龙周, 陈松坤, 王德禹. 基于SMOTE算法的船舶结构可靠性优化设计[J]. 上海交通大学学报, 2019, 53(1): 26-34. |
[14] | 甘志云, 刘贵吉, 李江, 董春, 马璟. 手工超声波检验在CRA复合管焊缝中的应用[J]. 海洋工程装备与技术, 2018, 5(增刊): 287-289. |
[15] | 李林斌. 深水结构设计流剖面的推算方法研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 193-198. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||