J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1169-1180.doi: 10.1007/s12204-022-2534-2
周成,蒋祖华
收稿日期:
2022-04-24
接受日期:
2022-07-18
出版日期:
2024-11-28
发布日期:
2024-11-28
ZHOU Cheng (周成), JIANG Zuhua∗ (蒋祖华)
Received:
2022-04-24
Accepted:
2022-07-18
Online:
2024-11-28
Published:
2024-11-28
摘要: 从设计规范中自动提取关键数据是辅助工程设计自动化的重要手段。针对设计规范数据类型多、规模小、字符信息含量不足、上下文相关性强等特点,提出了一种集成高质量主题与注意力机制的命名实体识别模型,即“高质量主题-字符嵌入- BiLSTM- CRF”,用于设计规范实体的自动识别。在主题模型的基础上,提出了一种改进的高质量主题提取算法,然后将获得的高质量主题信息加入到汉字的分布式表示中,以更好地丰富汉字特征。其次,在BiLSTM-CRF模型的基础上并行使用注意机制,充分挖掘上下文语义信息。最后,在收集到的中国船舶设计规范语料上进行了实验,并与多组模型进行了比较。结果表明:该模型的F-score(召回率和准确率的调和平均值)为80.24%。该模型在设计规范方面优于其他模型,有望为工程设计提供一种自动化手段。
中图分类号:
周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180.
ZHOU Cheng (周成), JIANG Zuhua∗ (蒋祖华). Named Entity Recognition of Design Specification Integrated with High-Quality Topic and Attention Mechanism[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180.
[1] LAI T Q, CHENG L L, WANG D P, et al. RMAN: Relational multi-head attention neural network for joint extraction of entities and relations [J]. Applied Intelligence, 2022, 52(3): 3132-3142. [2] SHI D M, LIN Y G, CHEN E H. A NER-based feature selection method for text classification [J]. Computer Engineering & Science, 2007, 29(11): 152-156 (in Chinese). [3] WU W T, LI P F, ZHU Q M. Joint extraction of entities and events by a hybrid neural network [J]. Journal of Chinese Information Processing, 2019, 33(8): 77-83(in Chinese). [4] WANG Q L, LIANG Y, YAN L F, et al. Research on named entity recognition algorithm based on Power Intelligent Question Answering System [J]. Electronic Technology and Software Engineering, 2022(3): 95-98(in Chinese). [5] BORTHWICK A, STERLING J, AGICHTEIN E, et al. Description of the MENE named entity system as used in MUC-7 [C]//7th Message Understanding Conference. Fairfax: ACL, 1998: 1-7. [6] BURGER J D, HENDERSON J C, MORGAN W T. Statistical named entity recognizer adaptation [C]//6th Conference on Natural Language Learning. Stroudsburg: ACL, 2002: 1-4. [7] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [C]//18th International Conference on Machine Learning. San Francisco: ACM, 2001: 282-289. [8] PENG N Y, DREDZE M. Improving named entity recognition for Chinese social media with word segmentation representation learning [C]//54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Berlin: ACL, 2016:149-155. [9] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [DB/OL]. (2015-08-09).https://arxiv.org/abs/1508.01991. [10] BHARADWAJ A, MORTENSEN D, DYER C, et al. Phonologically aware neural model for named entity recognition in low resource transfer settings [C]//2016 Conference on Empirical Methods in Natural Language Processing. Austin: ACL, 2016: 1462-1472. [11] MA X Z, HOVY E. End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF [C]//54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin: ACL,2016: 1064-1074. [12] GU Y. Research on complex Chinese named entity recognition based on BiLSTM-CRF [D]. Nanjing: Nanjing University, 2019 (in Chinese). [13] DEVLIN J, CHANG M W, LEE K, et al.Bert: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. (2018-10-11).https://arxiv.org/abs/1810.04805. [14] ZHANG W T, JIANG S H, ZHAO S, et al. A BERTBiLSTM-CRF model for Chinese electronic medical records named entity recognition [C]//2019 12th International Conference on Intelligent Computation Technology and Automation. Xiangtan: IEEE, 2019: 166-169. [15] KIM Y. Convolutional neural networks for sentence classification [C]//2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751. [16] FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814):972-976. [17] FU R J, QIN B, LIU T. Open-categorical text classification based on multi-LDA models [J]. Soft Computing, 2015, 19(1): 29-38. [18] LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond [DB/OL].(2019-08-08). https://arxiv.org/abs/1908.03265. [19] ZHANG M R, LUCAS J, HINTON G E, et al. Lookahead optimizer: k steps forward, 1 step back [DB/OL].(2019-07-19). https://arxiv.org/abs/1907.08610. |
[1] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[2] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[3] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[4] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[5] | 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101. |
[6] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
[7] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[8] | 陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[9] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
[10] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[11] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[12] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[13] | 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325. |
[14] | 袁铭, 刘群, 孙海超, 谭洪胜. 基于变分推断和元路径分解的异质网络表示方法[J]. 上海交通大学学报, 2021, 55(5): 586-597. |
[15] | 蔡云泽, 张彦军. 基于双通道特征增强集成注意力网络的红外弱小目标检测方法[J]. 空天防御, 2021, 4(4): 14-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||