J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1071-1080.doi: 10.1007/s12204-023-2605-z
王爽1,王登峰2,宁占金1,胡中建1
收稿日期:
2022-09-15
接受日期:
2022-11-23
出版日期:
2024-11-28
发布日期:
2024-11-28
WANG Shuang1∗ (王爽), WANG Dengfeng2 (王登峰), NING Zhanjin1 (宁占金), HU Zhongjian1 (胡中建)
Received:
2022-09-15
Accepted:
2022-11-23
Online:
2024-11-28
Published:
2024-11-28
摘要: 为有效提升消防车车架结构整体性能,解决传统车架结构优化设计过程中方法的复杂性,同时需要对传统的灰色关联度进行改进,因此,提出了主成分分析与改进的灰色关联分析相结合的方法,实现车架的优化设计。首先,基于一阶模态试验验证初始模型的有效性,在此基础上,设计出新款车架,以变形量、最大应力及车架质量的降低和疲劳寿命、一阶弯和一阶扭模态频率的提升为目标,通过哈默斯雷方法生成60组样本点。随后,提出改进的灰色关联分析与主成分分析集成来实现车架优化设计,最后,获取车架结构的设计参数最佳组合。同时,通过优化前后模型的比较,发现质量降低了14.8%,此外,将该方法与传统方法比较,发现计算成本降低了135%。因此,该方法在改善车架轻量化性能的同时提升了计算效率。
中图分类号:
王爽1, 王登峰2, 宁占金1, 胡中建1. 基于改进的灰色关联分析的车架优化设计[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1071-1080.
WANG Shuang1∗ (王爽), WANG Dengfeng2 (王登峰), NING Zhanjin1 (宁占金), HU Zhongjian1 (胡中建). Frame Optimization Design Based on Improved Grey Relational Analysis[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1071-1080.
[1] MA F W, CHEN S X, ZHAO H L, et al. Lightweight on frame of FSC with constriants of strength, stiffness and modal [J]. Journal of Hunan University (NaturalSciences), 2018, 45(4): 18-25 (in Chinese). [2] LI S M, ZHANG K C, DING R, et al. Lightweight technology of steel aluminum combined commercial vehicle frame [J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(10): 1-8 (in Chinese). [3] GOSWAMI B, PRASAD S, SHARMA G S, et al. Properties in materials for car frame structure [J]. International Journal of Manufacturing and Materials Processing, 2019, 5(2): 41-51. [4] PODKOWSKI K, MAZUK A, STASIAK A, et al.Testing of the torsional stiffness of the passenger car frame and its validation by means of finite element analysis [J]. The Archives of Automotive Engineering-Archiwum Motoryzacji, 2019, 85(3): 83-101. [5] XU Y X, DING P F, LI Z L, et al. Design of FSAE formula racing car frame and finite element analysis[M]//Proceedings of China SAE congress 2020: Selected papers. Singapore: Springer Nature Singapore,2022: 145-163. [6] SADEGHI A, KAZEMI H, SAMADI M. Reliability analysis of steel moment-resisting frame structure under the light vehicle collision [J]. Amirkabir Journal of Civil Engineering, 2022, 53(11): 14-21. [7] ZHANG J, RAN W. Lightweight optimization design of a light electric commercial vehicle frame [J]. Journal of Physics: Conference Series, 2021, 1939(1): 012038. [8] SEYFRIED P, TAISS E J M, CALIJORNE A C, et al. Light weighting opportunities and material choice for commercial vehicle frame structures from a design point of view [J]. Advances in Manufacturing, 2015,3(1): 19-26. [9] WANG Z Y, WANG Z H, ZHANG S B, et al.Application of CVDA sequential sampling method to lightweight design of aluminum alloy frame [J]. Automotive Engineering, 2019, 41(12): 1466-1472 (in Chinese). [10] MI C J, GU Z Q, JIAN H G, et al. Anti-fatigue and lightweight design for frame structures of electric wheel dump trucks [J]. China Mechanical Engineering, 2017,28(20): 2455-2462 (in Chinese). [11] CHEN D L, ZHAO H J, ZHU W C, et al. Stiffness analysis of miniature electric commercial vehicle frame based on lightweight aluminum alloy 7475 material [J].IOP Conference Series: Earth and Environmental Science, 2019, 242: 032044. [12] WANG D F, ZHANG X P. Application of the preference selection index method in multi-objective lightweight design of heavy commercial vehicle frames [J]. Engineering Optimization, 2022: 1-20. [13] REN M, SUN T, SHI Y J, et al. Lightweight optimization of vehicle frame structure based on the kriging approximate model [J]. Journal of Mechanical Strength,2019, 41(6): 1372-1377 (in Chinese). [14] GUO Q H, ZHAN X, WANG M, et al. Lightweight design of a medium-sized commercial vehicle frame considering fatigue life [J]. Machine Design & Research,2020, 36(1): 210-215 (in Chinese). [15] LEI F, LV X, FANG J, et al. Multiobjective discrete optimization using the TOPSIS and entropy method for protection of pedestrian lower extremity [J]. Thin-Walled Structures, 2020, 152: 106349. [16] WANG S, WANG D F. Research on crashworthiness and lightweight of B-pillar based on MPSO with TOP-SIS method [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(11): 498. [17] SALMANI H, KHALKHALI A, AHMADI A. Multiobjective optimization of vehicle floor panel with a laminated structure based on V-shape development model and Taguchi-based grey relational analysis [J].Structural and Multidisciplinary Optimization, 2022,65(3): 95. [18] SHAN Z Y, LONG J Q, YU P, et al. Lightweight optimization of passenger car seat frame based on grey relational analysis and optimized coefficient of variation [J]. Structural and Multidisciplinary Optimization,2020, 62(6): 3429-3455. [19] XIONG F, WANG D F, MA Z D, et al. Lightweight optimization of the front end structure of an automobile body using entropy-based grey relational analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(4): 917-934. [20] WANG S, WANG D F. Optimization design of carbon fiber reinforced polymer anti-collision beam crashworthiness by grey relational analysis with entropy method [J]. Acta Materiae Compositae Sinica, 2020,37(2): 345-355 (in Chinese). [21] COULLEREZ G, LUNDMARK S, MALMSTROM E, et al. ToF-SIMS for the characterization of hyperbranched aliphatic polyesters: Probing their molecular weight on surfaces based on principal component analysis (PCA) [J]. Surface and Interface Analysis, 2003,35(8): 693-708. [22] QAZI M U D, HE L S, MATEEN P. Hammersley sampling and support-vector-regression-driven launch vehicle design [J]. Journal of Spacecraft and Rockets,2007, 44(5): 1094-1106. |
[1] | 杨丹,余海东,林张鹏. 基于绝对节点坐标法的柔性复合结构动力学分析与最优参数设计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 621-629. |
[2] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[3] | 谢颉, 张文光, 尹雪乐, 李伟. 基于正交试验方法的柔性神经电极优化设计[J]. 上海交通大学学报, 2020, 54(8): 785-791. |
[4] | 王兰志, 李书新. 一种基于滑动铰点的快速起竖方法及优化设计[J]. 空天防御, 2020, 3(2): 24-28. |
[5] | 来颜博, 阎高伟, 程兰, 陈泽华. 基于动态独立成分分析和动态主成分分析的测地线流式核无监督回归模型[J]. 上海交通大学学报, 2020, 54(12): 1269-1277. |
[6] | 温桠妮, 颜国正, 王志武, 姜萍萍, 薛蓉蓉, 王艺芸. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123. |
[7] | 张科, 吴亚东. 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020, 54(10): 1024-1034. |
[8] | 龙周, 陈松坤, 王德禹. 基于SMOTE算法的船舶结构可靠性优化设计[J]. 上海交通大学学报, 2019, 53(1): 26-34. |
[9] | 卫旭敏, 张传荣, 张恩铭, 郭洪, 吴文龙, 张荆柯. 基于ANSYS的短抬梁结构优化设计[J]. 海洋工程装备与技术, 2018, 5(增刊): 149-153. |
[10] | 高雅1,王占永1,2,路庆昌1,彭仲仁1. 城市高架路沿侧细颗粒物的垂直分布特征研究[J]. 上海交通大学学报(自然版), 2018, 52(6): 650-657. |
[11] | 吴军a, b,黎国强a,吴超勇a,程一伟c,邓超c. 数据驱动的滚动轴承性能衰退状态监测方法[J]. 上海交通大学学报(自然版), 2018, 52(5): 538-544. |
[12] | 高筱婷,杨东升. 基于数据驱动的智能电器运行状态监测方法 [J]. 上海交通大学学报(自然版), 2017, 51(9): 1104-1110. |
[13] | 程耀楠,韩禹,关睿,徐明,卢真真. 高强钢高效加工层切面铣刀优化设计及仿真分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 1006-1012. |
[14] | 翟国栋, 李明阳. 机械优化设计课程实践教学项目设计[J]. 实验室研究与探索, 2017, 36(5): 178-183. |
[15] | 孟祥伟, 于玮, 邓欣旺, 张建成, 刘江涛. HYSY201船托管架滚轮组的结构改进[J]. 海洋工程装备与技术, 2017, 4(3): 162-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||