[1]何正嘉, 曹宏瑞, 訾艳阳, 等. 机械设备运行可靠性评估的发展与思考[J]. 机械工程学报, 2014, 50(2): 171-186.
HE Zhengjia, CAO Hongrui, ZI Yanyang, et al. Developments and thoughts on operational reliability assessment of mechanical equipment[J]. Journal of Mechanical Engineering, 2014, 50(2): 171-186.
[2]MURUGANATHAM B, SANJTH M A, KRISHNAKUMAR B, et al. Roller element bearing fault diagnosis using singular spectrum analysis[J]. Mechanical System & Signal Processing, 2013, 35(1/2): 150-166.
[3]KANKAR P K, SHARMA S C, HARSHA S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform[J]. Neurocomputing, 2013, 110(8): 9-17.
[4]孟宗, 胡猛, 谷伟明, 等. 基于LMD多尺度熵和概率神经的滚动轴承故障诊断方法[J].中国机械工程, 2016, 27(4): 433-436.
MENG Zong, HU Meng, GU Weiming, et al. Rolling bearing fault diagnosis method based on LMD multi-scale entropy and probabilistic neural network[J]. Journal of Mechanical Engineering, 2016, 27 (4): 433-436.
[5]ZHANG X Y, ZHOU J Z. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 127-140.
[6]KIM H E, TAN A C C, MATHEW J, et al. Bearing fault prognosis based on health state probability estimation[J]. Expert Systems with Applications, 2012, 39(5): 5200-5213.
[7]WANG Y H, DENG C, WU J, et al. Failure time prediction for mechanical device based on the degradation sequence[J]. Journal of Intelligent Manufacturing, 2015, 26(6): 1181-1199.
[8]张梅军, 唐建, 何晓晖. EEMD方法及在机械故障诊断中的应用[M]. 北京: 国防工业出版社, 2015.
ZHANG Meijun, TANG Jian, HE Xiaohui. EEMD method and its application in mechanical fault diagnosis[M]. Beijing: National Defense Industry Press, 2015.
[9]SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation & Mea-surement, 2014, 64(1): 52-62.
[10]WANG Y H, DENG C, WU J, et al. A corrective maintenance scheme for engineering equipment[J]. Engineering Failure Analysis, 2014, 36: 269-283.
[11]CHENG Q, ZHAO H W, ZHANG G J, et al. An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(1/2/3/4): 107-121.
[12]WU J, WU C Y, LV Y Q, DENG C, SHAO X Y. Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA[J]. Industrial Management & Data Systems, 2017, 117(4): 713-728.
[13]JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Enabling health monitoring approach based on vibration data for accurate prognostics[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 647-656.
[14]PATRICK N, RAFAEL G, KAMAL M, et al. PRONOSTIA: An experimental platform for bearings accelerated life test[C]∥International Conference on Prognostics and Health Management. Denver, USA: IEEE, 2012.
[15]SINGLETON R K, STRANGAS E G, AVIYENTE S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1781-1790.
[16]CARINO J A, ZURITA D, DELGADO M, et al. Remaining useful life estimation of ball bearings by means of monotonic score calibration[C]∥International Conference on Industrial Technology. Seville, Spain: IEEE, 2015: 1752-1758. |