J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1081-1090.doi: 10.1007/s12204-022-2411-z
周苏,钟泽滨
收稿日期:
2021-01-28
接受日期:
2021-05-07
出版日期:
2024-11-28
发布日期:
2024-11-28
ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨)
Received:
2021-01-28
Accepted:
2021-05-07
Online:
2024-11-28
Published:
2024-11-28
摘要: 车辆与行人测距是高级驾驶辅助系统的基本功能之一。然而,大多数测距系统只能在具有高计算能力的工作站上工作。为了解决这一问题,提出了一种轻量级算法,将其打包到Android应用程序包中,安装在Android智能手机中,用于车辆和行人测距。该测距系统基于智能手机单目摄像头获取的图像。为了实现实时测距,提出了一种8位整数(int8)量化算法来加速卷积神经网络的推理。为了提高检测精度,进一步提出了一种放大算法来检测远距离的小目标。在检测到车辆和行人的二维边界框后,采用针孔测距法估计距离。为了验证所提出的算法,首先在华为P40Pro上使用COCO数据集测试了平均精度均值(mAP)和帧/秒(FPS),然后在真实道路上测试了测距精度。实验结果表明:该算法能够在被测智能手机上成功实现34.8 mAP高精度的15 FPS实时测距。最后,给出了基于测距算法的一种可能的移动应用,即保持距离预警。
中图分类号:
周苏, 钟泽滨. 基于车载智能手机的实时车辆及行人测距[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090.
ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090.
[1] YU X, MARINOV M. A study on recent developments and issues with obstacle detection systems for automated vehicles [J]. Sustainability, 2020, 12(8): 3281. [2] WANG Z, LIU J. A review of object detection based on convolutional neural network [C]//2017 36th Chinese Control Conference. Dalian: IEEE, 2017: 11101-11109. [3] CHEY Y H. Vehicle detection and collision avoidance apparatus: US4626850 [P]. 1986-12-02. [4] VIOLA P, JONES M J, SNOW D. Detecting pedestrians using patterns of motion and appearance [J]. International Journal of Computer Vision, 2005, 63(2):153-161. [5] MALISIEWICZ T, GUPTA A, EFROS A A. Ensemble of exemplar-SVMs for object detection and beyond [C]//2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 89-96. [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017,60(6): 84-90. [7] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934. [8] POTMESIL M, CHAKRAVARTY I. Synthetic image generation with a lens and aperture camera model [J].ACM Transactions on Graphics, 1982, 1(2): 85-108. [9] NAKAMURA K, ISHIGAKI K, OGATA T, et al.Real-time monocular ranging by Bayesian triangulation [C]//2013 IEEE Intelligent Vehicles Symposium.Gold Coast: IEEE, 2013: 1368-1373. [10] GAO M, MENG X, YANG Y, et al. A traffic avoidance system based on binocular ranging [C]//2017 12th IEEE Conference on Industrial Electronics and Applications. Siem Reap: IEEE, 2017: 1039-1043. [11] WU J, LENG C, WANG Y, et al. Quantized convolutional neural networks for mobile devices [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 4820-4828. [12] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetv3 [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019:1314-1324. [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision andPattern Recognition. Las Vegas, NV: IEEE, 2016: 779-788. [14] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/yolov5: v3.1 - Bug fixes and performance improvements [EB/OL]. (2020-10-29). https://doi.org/10.5281/zenodo.4154370. [15] JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integerarithmetic-only inference [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT: IEEE, 2018: 2704-2713. [16] KRISHNAMOORTHI R. Quantizing deep convolutional networks for efficient inference: A whitepaper [EB/OL]. (2018-06-21). https://arxiv.org/abs/1806.08342. [17] GOOGLE. Tensorflow-Lite [EB/OL]. [2021-01-25].https://tensorflow.google.cn/lite. [18] KULLBACK S, LEIBLER R A. On information and sufficiency [J]. The Annals of Mathematical Statistics,1951, 22(1): 79-86. [19] SALIMANS T, KINGMA D P. Weight normalization:A simple reparameterization to accelerate training of deep neural networks [M]//Advances in neural information processing systems 29. Red Hook, NY: Curran Associates, Inc., 2016: 901-909. [20] FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36(4): 193-202. [21] ANYSZ H, ZBICIAK A, IBADOV N. The influence of input data standardization method on prediction accuracy of artificial neural networks [J]. Procedia Engineering, 2016, 153: 66-70. [22] ROSER M, APPEL C, RITCHIE H. Human height [EB/OL]. [2021-01-25]. https:// ourworldindata.org/human-height. [23] TOHA M T H. Average car length: List of car lengths in details [EB/OL]. [2021-01-25]. https:// anewwayforward.org/ average-car-length. [24] GOOGLE. Android Studio 4.1.1 [EB/OL]. [2021-01-25]. https://developer.android.com/studio. [25] LIN T Y, MAIRE M, BELONGIE SJ, et al. Microsoft COCO: Common objects in context [M]//Computer vision—ECCV 2014. Cham: Springer, 2014: 740-755. [26] AARP. What is a safe following distance on the road[EB/OL]. [2021-01-25]. https:// www.aarp.org/ auto/driver-safety/ info-2013/ safe-following-distance. |
[1] | 秦菁, 文渊博, 高涛, 刘瑶. 面向多天气退化图像恢复的自注意力扩散模型[J]. 上海交通大学学报, 2024, 58(10): 1606-1617. |
[2] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[3] | 张峻宁, 苏群星, 王成, 徐超, 李一宁. 一种改进变换网络的域自适应语义分割网络[J]. 上海交通大学学报, 2021, 55(9): 1158-1168. |
[4] | 武光利, 郭振洲, 李雷霆, 王成祥. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614. |
[5] | 蒋兴浩, 赵泽宇, 许可. 基于视觉的飞行器智能目标检测对抗攻击技术[J]. 空天防御, 2021, 4(1): 8-13. |
[6] | 马波,周越. 一种新的多视角人脸跟踪算法[J]. 上海交通大学学报(自然版), 2010, 44(07): 902-0906. |
[7] | 应俊豪,张秀彬. 矿石颗粒尺度分布的双圆算法[J]. 上海交通大学学报(自然版), 2010, 44(03): 384-0388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||