J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 377-387.doi: 10.1007/s12204-023-2679-7
• • 下一篇
苗镇华1,黄文焘2,张依恋3,范勤勤1*
接受日期:
2023-08-24
出版日期:
2024-05-28
发布日期:
2024-05-28
MIAO Zhenhua1(苗镇华),HUANG Wentao2(黄文焘),ZHANG Yilian3(张依恋), FAN Qinqin1*(范勤勤)
Accepted:
2023-08-24
Online:
2024-05-28
Published:
2024-05-28
摘要: 多机器人任务分配直接影响多机器人协作系统的整体性能。为提高多机器人协作系统的有效性、鲁棒性和安全性,本文提出一种基于深度强化学习的多模态多目标进化算法。在所提算法中,使用一种改进的多模态多目标进化算法来对多机器人任务分配问题进行求解,并在最后一代利用深度强化学习以端到端的方式给出各个机器人执行任务的路线。为验证所提算法的性能,与三种知名的多模态多目标进化算法在三种不同场景的多机器人任务分配问题上进行比较。实验结果表明,所提算法能够提供尽可能多的等效方案来提高多机器人协作系统在不确定环境下的可用性和鲁棒性,并且能够找到最佳方案来提高多机器人协作系统的整体任务执行效率。
中图分类号:
苗镇华1, 黄文焘2, 张依恋3, 范勤勤1. 基于深度强化学习的多模态多目标多机器人任务分配算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 377-387.
MIAO Zhenhua(苗镇华), HUANG Wentao(黄文焘), ZHANG Yilian(张依恋), FAN Qinqin(范勤勤). Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 377-387.
[1] PATLE B K, BABU L G, PANDEY A, et al. A review: On path planning strategies for navigation of mobile robot [J]. Defence Technology, 2019, 15(4): 582-606. [2] KAMRAN S, FARHAT I, TALHA MAHBOOB A, et al. The impact of artificial intelligence and robotics on the future employment opportunities [J]. Trends in Computer Science and Information Technology, 2020:50-54. [3] MA Y E, LI B, HUANG W T, et al. An improved NSGA-II based on multi-task optimization for multiUAV maritime search and rescue under severe weather [J]. Journal of Marine Science and Engineering, 2023, 11(4): 781. [4] CAO R Y, LI S C, JI Y H, et al. Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm [J]. Computers and Electronics in Agriculture, 2021, 182: 105993. [5] SEENU N, KUPPAN CHETTY R M, RAMYA M M, et al. Review on state-of-the-art dynamic task allocation strategies for multiple-robot systems [J]. Industrial Robot: the International Journal of Robotics Research and Application, 2020, 47(6): 929-942. [6] LEE D H, ZAHEER S A, KIM J H. A resourceoriented, decentralized auction algorithm for multirobot task allocation [J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(4): 1469-1481. [7] CHEN X Y, ZHANG P, DU G L, et al. A distributed method for dynamic multi-robot task allocation problems with critical time constraints [J]. Robotics and Autonomous Systems, 2019, 118: 31-46. [8] LEE D H. Resource-based task allocation for multirobot systems [J]. Robotics and Autonomous Systems, 2018, 103: 151-161. [9] WANG S L, LIU Y J, QIU Y T, et al. Cooperative task allocation for multi-robot systems based on multiobjective ant colony system [J]. IEEE Access, 2022, 10:56375-56387. [10] ALITAPPEH R J, JEDDISARAVI K. Multi-robot exploration in task allocation problem [J]. Applied Intelligence, 2022, 52(2): 2189-2211. [11] LI J, YANG F. Task assignment strategy for multirobot based on improved grey wolf optimizer [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(12): 6319-6335. [12] XUE F, DONG T T, YOU S Q, et al. A hybrid manyobjective competitive swarm optimization algorithm for large-scale multirobot task allocation problem [J]. International Journal of Machine Learning and Cybernetics, 2021, 12(4): 943-957. [13] HUANG L, DING Y S, ZHOU M C, et al. Multiplesolution optimization strategy for multirobot task allocation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(11): 4283-4294. [14] MIAO Z H, HUANG W T, JIANG Q C, et al. A novel multimodal multi-objective optimization algorithm for multi-robot task allocation [J]. Transactions of the Institute of Measurement and Control, 2023.https://doi.org/10.1177/01423312231183588. [15] LI K W, ZHANG T, WANG R. Deep reinforcement learning for multiobjective optimization [J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3103-3114. [16] Li K, Zhang T, Wang R, et al. Research reviews of combinatorial optimization methods based on deep reinforcement learning [J]. Acta Automatica Sinica, 2021, 47(11): 2521-2537 (in Chinese). [17] NAZARI M, OROOJLOOY A, SNYDER L V, et al. Deep reinforcement learning for solving the vehicle routing problem [DB/OL]. (2018-02-12) [2023-08-03]. https://arxiv.org/abs/1802.04240. [18] Huang L. Intelligent optimization and dynamic coordination of multi-robot patrolling system [D]. Shanghai: Donghua University, 2020 (in Chinese). [19] LIANG J, XU W W, YUE C T, et al. Multimodal multiobjective optimization with differential evolution [J]. Swarm and Evolutionary Computation, 2019, 44:1028-1059. [20] FAN Q Q, ERSOY O K. Zoning search with adaptive resource allocating method for balanced and imbalanced multimodal multi-objective optimization [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(6):1163-1176. [21] FAN Q Q, YAN X F. Solving multimodal multiobjective problems through zoning search [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2021, 51(8): 4836-4847. [22] LIANG J, QIAO K J, YUE C T, et al. A clusteringbased differential evolution algorithm for solving multimodal multi-objective optimization problems [J]. Swarm and Evolutionary Computation, 2021, 60:100788. [23] QU B Y, LI C, LIANG J, et al. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems [J]. Applied Soft Computing, 2020, 86: 105886. [24] GUERREIRO A P, FONSECA C M, PAQUETE L. The hypervolume indicator [J]. ACM Computing Surveys, 2022, 54(6): 1-42. [25] HUANG H, YANG S L, LI X Q, et al. An embedded Hamiltonian graph-guided heuristic algorithm for two-echelon vehicle routing problem [J]. IEEE Transactions on Cybernetics, 2022, 52(7): 5695-5707. |
[1] | 刘文倩, 单梁, 张伟龙, 刘成林, 马强. 复杂环境下基于改进Informed RRT*的无人机路径规划算法[J]. 上海交通大学学报, 2024, 58(4): 511-524. |
[2] | 黄山1,黄洪钟1,曾奇2. 一种四阶段的快速移动机器人局部轨迹规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 428-435. |
[3] | 全家乐, 马先龙, 沈昱恒. 基于近端策略动态优化的多智能体编队方法[J]. 空天防御, 2024, 7(2): 52-62. |
[4] | 董德金, 范云锋, 蔡云泽. 一种具有必经点约束的非结构化环境路径规划方法[J]. 空天防御, 2024, 7(1): 71-80. |
[5] | 马驰, 张国群, 孙俊格, 吕广喆, 张涛. 基于深度强化学习的综合电子系统重构方法[J]. 空天防御, 2024, 7(1): 63-70. |
[6] | 黄鹤, 高永博, 茹锋, 杨澜, 王会峰. 基于自适应黏菌算法优化的无人机三维路径规划[J]. 上海交通大学学报, 2023, 57(10): 1282-1291. |
[7] | . 基于栅格图特征点提取下的蚁群算法路径规划[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 86-99. |
[8] | 裘柯钧, 鲍中凯, 陈璐. 民用客机总装车间自动引导车任务分配及路径规划[J]. 上海交通大学学报, 2023, 57(1): 93-102. |
[9] | 陈禹伊, 陈璐. 车辆路径规划问题的逆向优化方法[J]. 上海交通大学学报, 2022, 56(1): 81-88. |
[10] | 李鹏, 阮晓钢, 朱晓庆, 柴洁, 任顶奇, 刘鹏飞. 基于深度强化学习的区域化视觉导航方法[J]. 上海交通大学学报, 2021, 55(5): 575-585. |
[11] | 李昭莹, 欧一鸣, 石若凌. 基于深度Q网络的改进RRT路径规划算法[J]. 空天防御, 2021, 4(3): 17-23. |
[12] | 李征, 陈建伟, 彭博. 基于伪谱法的无人机集群飞行路径规划[J]. 空天防御, 2021, 4(1): 52-59. |
[13] | 刘洋,陈璐. 养护车辆路径规划的鲁棒性优化方法[J]. 上海交通大学学报(自然版), 2018, 52(4): 388-394. |
[14] | 乐健,张华,叶艳辉,范宇. 基于旋转电弧传感机器人立焊焊缝的跟踪[J]. 上海交通大学学报(自然版), 2015, 49(03): 348-352. |
[15] | 杨乘东,钟继勇,陈玉喜,陈善本. 基于视觉识别的多层多道路径规划修正[J]. 上海交通大学学报(自然版), 2015, 49(03): 297-300. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 231
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 614
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||