J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 270-279.doi: 10.1007/s12204-021-2390-5
特日格乐1,张玉妥1,2
收稿日期:
2020-10-24
接受日期:
2020-11-27
出版日期:
2023-03-28
发布日期:
2023-03-21
TE Rigele1(特日格乐), ZHANG Yutuo1,2∗ (张玉妥)
Received:
2020-10-24
Accepted:
2020-11-27
Online:
2023-03-28
Published:
2023-03-21
摘要: 为了获得15-5PH不锈钢更好的强度-韧性匹配,采用双时效处理方法研究了15-5PH不锈钢的力学性能和组织演变。在本研究中,Cu析出相和逆变奥氏体对强度-韧性匹配的改善起着决定性作用。采用电子背散射衍射、透射电镜术和扫描透射电镜术对其微观结构进行了观察。分别采用Thermo-Calc软件和X射线衍射计算并测量Cu析出相和逆变奥氏体的体积分数。结果表明,逆变奥氏体在马氏体板条边界处形成,其体积分数也随着时效温度的增加而增加,同时,Cu析出相的尺寸也逐渐增大。双时效处理与传统的单时效处理相比,15-5PH不锈钢的双时效处理可以在保持必要强度的同时提高韧性。15-5PH不锈钢在550 ℃ × 4 h + 580 ℃ × 1 h的双时效处理中,具有最佳的强度和低温(? 40 ℃)韧性匹配,其屈服强度为1.037 GPa,抗拉强度为1.086 GPa,低温(? 40 ℃)冲击功为179 J。
中图分类号:
特日格乐, 张玉妥, . 双时效处理对15-5PH不锈钢强度-韧性的改善[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 270-279.
TE Rigele (特日格乐), ZHANG Yutuo, ∗ (张玉妥). Strength-Toughness Improvement of 15-5PH Stainless Steel by Double Aging Treatment[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 270-279.
[1] | AGHAIE-KHAFRI M, MOUSAVI ANIJDAN S H, AMIRKAMALI M. Microstructural evolution under ausforming and aging conditions in 17-4 PH stainless steel [J]. Materials Research Express, 2019, 6(10): 106532. |
[2] | COUTURIER L, DE GEUSER F, DESCOINS M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment [J]. Materials & Design, 2016, 107: 416-425. |
[3] | MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. Journal of Materials Research and Technology, 2012, 1(3): 167-177. |
[4] | MURAYAMA M, HONO K, KATAYAMA Y. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 ?C [J]. Metallurgical and Materials Transactions A, 1999, 30(2): 345-353. |
[5] | HAN G, XIE Z J, LI Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel [J]. Materials & Design, 2017, 135: 92-101. |
[6] | YELI G M, AUGER M A, WILFORD K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Materialia, 2017, 125: 38-49. |
[7] | PARK E S, YOO D K, SUNG J H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel [J]. Metals and Materials International, 2004, 10(6): 521-525. |
[8] | YE D, LI J, JIANG W, et al. Formation of reversed austenite in high temperature tempering process and its effect on mechanical properties of Cr15 super martensitic stainless steel alloyed with copper [J]. Steel Research International, 2013, 84(4): 395-401. |
[9] | BHAMBROO R, ROYCHOWDHURY S, KAIN V, et al. Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel [J]. Materials Science and Engineering A, 2013, 568: 127-133. |
[10] | MAN C, DONG C F, KONG D C, et al. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel [J]. Corrosion Science, 2019, 151: 108-121. |
[11] | FAN Y H, ZHANG B, YI H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Materialia, 2017, 139: 188-195. |
[12] | SONG Y Y, LI X Y, RONG L J, et al. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels [J]. Materials Chemistry and Physics, 2014, 143(2): 728-734. |
[13] | ZHOU T, PRASATH BABU R, ODQVIST J, et al. Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation-hardening martensitic stainless steel 15-5 PH [J]. Materials & Design, 2018, 143: 141-149. |
[14] | HABIBI BAJGUIRANI H R. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Materials Science and Engineering A, 2002, 338(1/2): 142-159. |
[15] | SUN Y W, ZHONG Y P, WANG L S. The interaction between ε-copper and dislocation in a high copper 17-4PH steel [J]. Materials Science and Engineering A, 2019, 756: 319-327. |
[16] | NIU M C, ZHOU G, WANG W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel [J]. Acta Materialia, 2019, 179: 296-307. |
[17] | CHEN J, LV M Y, TANG S, et al. Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel [J]. Materials Science and Engineering A, 2014, 594: 389-393. |
[18] | YEN H W, CHEN P Y, HUANG C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Materialia, 2011, 59(16): 6264-6274. |
[19] | LI Z T, CHAI F, YANG L, et al. Mechanical properties and nanoparticles precipitation behavior of multicomponent ultra high strength steel [J]. Materials & Design, 2020, 191: 108637. |
[20] | ZHANG C Y, WANG Q F, REN J X, et al. Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time [J]. Materials & Design, 2012, 36: 220-226. |
[21] | LIU H H, FU P X, LIU H W, et al. Effect of vanadium micro-alloying on the microstructure evolution and mechanical properties of 718H pre-hardened mold steel [J]. Journal of Materials Science & Technology, 2019, 35(11): 2526-2536. |
[22] | SUN J, WEI S T, LU S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal [J]. Materials Science and Engineering A, 2020, 772: 138739. |
[23] | KAMIKAWA N, SATO K, MIYAMOTO G, et al. Stress-strain behavior of ferrite and bainite with nanoprecipitation in low carbon steels [J]. Acta Materialia, 2015, 83: 383-396. |
[1] | 毕航铭. 316L不锈钢管道腐蚀原因分析及预防措施[J]. 海洋工程装备与技术, 2023, 10(4): 30-35. |
[2] | 战科江, 李海汀, 王淼, 周锋, 赵金城. 冷弯不锈钢方矩管腹板压跛极限承载力[J]. 上海交通大学学报, 2023, 57(12): 1619-1630. |
[3] | 姜勇,李洋,周阳,巩建鸣. 奥氏体不锈钢双极板的低温超饱和气体渗碳表面改性[J]. 上海交通大学学报(自然版), 2019, 53(2): 247-252. |
[4] | 刘贵吉, 甘志云, 李江, 王旭, 张洪飞. 超声相控阵检测技术在奥氏体不锈钢[J]. 海洋工程装备与技术, 2018, 5(增刊): 248-252. |
[5] | 谢鹏, 刘昊, 杨清书. 脐带缆超双相不锈钢管的受力分析[J]. 海洋工程装备与技术, 2018, 5(增刊): 60-64. |
[6] | 陶平1,2,王艳飞3,巩建鸣1,2,吴炜杰1,2,梁涛1,2. 氢在双相不锈钢中的扩散模拟[J]. 上海交通大学学报(自然版), 2018, 52(9): 1086-1091. |
[7] | 王军1,刘莹1,2. 316L不锈钢钝化膜的耐腐蚀性和血液相容性[J]. 上海交通大学学报(自然版), 2018, 52(5): 593-598. |
[8] | 冯巧波1,2,李永兵1,楼铭1,来新民1. 430铁素体不锈钢电阻点焊工艺性能[J]. 上海交通大学学报(自然版), 2018, 52(12): 1649-1654. |
[9] | 赖睿,蔡艳,吴岳,华学明. 光束焦点位置对双相不锈钢光纤激光#br# 焊接焊缝成形和组织的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 418-. |
[10] | 段振刚1,杜东海1,张乐福1,孟凡江2,石秀强2. 304和316L不锈钢的高温电化学腐蚀行为[J]. 上海交通大学学报(自然版), 2016, 50(02): 215-221. |
[11] | 杜丰泰. 液化天然气管道工程中所用低温钢的焊接性[J]. 海洋工程装备与技术, 2014, 1(2): 166-173. |
[12] | 杜东海1,陆辉1,陈凯1,张乐福1,石秀强2,徐雪莲2. 溶解氧对高温水中冷变形316L应力腐蚀开裂的影响规律[J]. 上海交通大学学报(自然版), 2014, 48(11): 1644-1649. |
[13] | 潘向烽1,段振刚1,张乐福1,王力1,徐雪莲2,石秀强2. 锌对316L奥氏体不锈钢氧化膜影响的XPS分析[J]. 上海交通大学学报(自然版), 2014, 48(03): 417-421. |
[14] | 董菲1,Guenel Germain2,Jean Lou Lebrun2,李铸国1. 有限元分析法确定JohsonCook本构方程材料参数[J]. 上海交通大学学报(自然版), 2011, 45(11): 1657-1660. |
[15] | 林舒,江来珠,张柯,张志霞,戎咏华. Ti和Nb对18Cr-2Mo铁素体不锈钢韧脆转变温度的影响[J]. 上海交通大学学报(自然版), 2010, 44(05): 598-0603. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||