上海交通大学学报(英文版) ›› 2015, Vol. 20 ›› Issue (2): 135-142.doi: 10.1007/s12204-015-1601-3
ZHU Hai-jiang (祝海江)
出版日期:
2015-04-30
发布日期:
2015-04-02
通讯作者:
ZHU Hai-jiang (祝海江)
E-mail: zhuhj@mail.buct.edu.cn
ZHU Hai-jiang (祝海江)
Online:
2015-04-30
Published:
2015-04-02
Contact:
ZHU Hai-jiang (祝海江)
E-mail: zhuhj@mail.buct.edu.cn
摘要:
This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on the liver disease through denoising the ultrasound image of the liver. First of all, an analytical expression for the hybrid threshold function is discussed. The wavelet-based hybrid threshold method is then investigated for ultrasound image of the liver. Finally, we test the influence of this parameter on the proposed method with the real ultrasound image corrupted by speckle noise with different variances. Moreover, we compare the proposed method under the varying parameters with the soft-threshold function and the hard-threshold function. Three metrics, which are correlation coefficient, edge preservation index and structural similarity index, are measured to quantify the denoised results of ultrasound liver image. Experimental results demonstrate the potential of the proposed method for ultrasound liver image denosing.
中图分类号:
ZHU Hai-jiang (祝海江). Wavelet-Based Hybrid Thresholding Method for Ultrasonic Liver Image Denoising[J]. 上海交通大学学报(英文版), 2015, 20(2): 135-142.
ZHU Hai-jiang (祝海江). Wavelet-Based Hybrid Thresholding Method for Ultrasonic Liver Image Denoising[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 135-142.
[1] | Wagner R F, Smith S W, Sandrik J M, et al.Statistics of speckle in ultrasound B-scans [J]. IEEE Transactions on Sonics and Ultrasonics, 1983, 30(3):156-163. |
[2] | Insana M F, Wagner R F, Garra B S, et al. Analysis of ultrasound image texture via generalized Rician statistics [J]. Optical Engineering, 1986, 25(6): 743-748. |
[3] | Dutt V, Greenleaf J F. ultrasound echo envelope analysis using a homodyned K-distribution signal model [J]. Ultarasonic Imaging, 1994, 16(4): 265-287. |
[4] | Jakeman E, Tough R J A. Generalized Kistribution:A statistical model for weak scattering [J].Journal of the Optical Society of America, 1987, 4(9):1764-1772. |
[5] | Koo J I, Park S B. Speckle reduction with edge preservation in medical ultrasonic images using a homogeneous region growing mean filter (HRGMF) [J].Ultrasonic Imaging, 1991, 13(3): 211-237. |
[6] | Angelova D, Mihaylova L. Contour segmentation in 2D ultrasound medical images with particle filtering[J]. Machine Vision and Applications, 2011, 22(3):551-561. |
[7] | Sivakumar R, Nedumaran D. Implementation of wavelet filters for speckle noise reduction in ultrasound medical images: A comparative study [C]//16th International Conference on Signals, Systems and Communication.Chalkida, Greece: IEEE, 2009: 239-242. |
[8] | Lanzolla A M L, Andria G, Attivissimo F,et al. Improving B-mode ultrasound medical images [C]// Proceedings of IEEE International Instrumentation and Measurement Technology Conference. Beijing,China: IEEE, 2011: 1704-1708. |
[9] | Damodaran N, Ramamurthy S, Velusamy S, et al. Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative [J].Ultrasound in Medicine & Biology, 2012, 38(2): 276-286. |
[10] | Sivakumar R, Gayathri M K, Nedumaran D.Speckle filtering of ultrasound B-scan images: A comparative study between spatial and diffusion filters [C]// 2010 IEEE Conference on Open Systems. Kuala Lumpur: IEEE, 2010: 80-85. |
[11] | Mateo J L, Fernandez-Caballero A F. Finding out general tendencies in speckle noise reduction in ultrasound images [J]. Expert Systems with Applications,2009, 36: 7786-7797. |
[12] | Bhuiyan M I H, Ahmad M O, Swamy M N S. Spatially adaptive thresholding in wavelet domain for despeckling of ultrasound images [J], IET Image Processing,2009, 3(3): 147-162. |
[13] | Khare A, Khare M, Jeong Y, et al. Despeckling of medical ultrasound images using Daubechies complex wavelet transform [J], Signal Processing, 2010, 90:428-439. |
[14] | Aiazzi B, Alparone L, Baronti S. Multiresolution local-statistics speckle filtering based on a ratio laplacian pyramid [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1466-1476. |
[15] | Rabbani H, Vafadust M, Abolmaesumi P, et al.Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors [J].IEEE Transactions on Biomedical Engineering, 2008,55(9): 2152-2160. |
[16] | Bioucas-Dias J M, Figueiredo M A T. Multiplicative noise removal using variable splitting and constrained optimization [J]. IEEE Transactions on Image Processing, 2010, 19: 1720-1730. |
[17] | Saputro A H, Mustafa M M, Hussain A, et al.Enhancement of myocardial boundary tracking using wavelet-based motion estimation [J]. Journal of Information and Computational Science, 2011, 8(10): 1779-1792. |
[18] | Foi A, Katkovnik V, Egiazarian K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395-1411. |
[19] | Gupta S, Chauhan R C, Saxena S C. Homomorphic wavelet thresholding technique for denoising medical ultrasound images [J]. Journal of Medical Engineering & Technology, 2005, 29(5): 208-214. |
[20] | Mihcak M K, Kozintsev I, Ramchandran K, et al. Low complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303. |
[21] | Donoho D L, Jonestone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81(3):425-455. |
[22] | Bruce A G, Gao H Y. Understanding WaveShrink:Variance and bias estimation [J]. Biometrika, 1996,83(4): 727-745. |
[23] | Pizurica A, Philips W, Lemahieu I, et al. A versatile wavelet domain noise filtration technique for medical imaging [J]. IEEE Transactions on Medical Imaging,2003, 22(3): 323-331. |
[24] | Rabbani H. Image denoising in steerable pyramid domain based on a local Laplace prior [J]. Pattern Recognition,2009, 42(9): 2181-2193. |
[25] | Tomic M, Sersic D, Vrankic M. Edge-preserving adaptive wavelet denoising using ICI rule [J]. Electronics Letters, 2008, 44(11): 698-699. |
[26] | Sendur L, Selesnick I W. Bivariate shrinkage with local variance estimation [J]. IEEE Signal Processing Letters, 2002, 9(12): 438-441. |
[27] | Yu H, Zhao L, Wang H. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain [J]. IEEE Transactions on Image Processing, 2009, 18(10): 2364-2369. |
[28] | Loupas T, Mcdicken W N, Allan P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images [J]. IEEE Transactions on Circuits and Systems, 1989, 36(1): 129-135. |
[29] | Chi D Z, Gang T, Gao S S. Background removal and weld crack detection based on energy distribution of image [J]. China Welding: English Edition, 2007, 16(1): 14-18. |
[30] | Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing,2004, 13(4): 600-612. |
[1] | BESSAAD Nassim, BAO Qilian, SUN Shuodong, DU Yuding, LIU Lin, HASSAN Mahmood Ul . Adaptive Dual Wavelet Threshold Denoising Function Combined with Allan Variance for Tuning FOG-SINS Filter[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 434-440. |
[2] | ZHANG Yanghao (张洋豪), ZENG Shaoning (曾少宁), ZENG Wei (曾威), GOU Jianping (苟建平). GNN-CRC: Discriminative Collaborative Representation-Based Classification via Gabor Wavelet Transformation and Nearest Neighbor [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 657-665. |
[3] | LIAN Zhichaoa,b* (练智超), SONG Jiea (宋 杰), LI Yanga (李 杨). Adaptive Illumination Normalization Approach Based on Denoising Technique for Face Recognition[J]. 上海交通大学学报(英文版), 2017, 22(1): 45-049. |
[4] | ZHANG Hao*(张昊), LIU Wenjiang (刘文江), WANG Ruolin (王若琳),LIU Tao (刘涛), RONG Mengti. Hardware Architecture Design of Block-Matching and 3D-Filtering Denoising Algorithm[J]. 上海交通大学学报(英文版), 2016, 21(2): 173-183. |
[5] | ZHU Hongyun (朱红运), WANG Changlong* (王长龙), CHEN Hailong (陈海龙), WANG Jianbin (王建斌). Pulsed Eddy Current Signal Denoising Based on Singular Value Decomposition[J]. 上海交通大学学报(英文版), 2016, 21(1): 121-128. |
[6] | WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition[J]. 上海交通大学学报(英文版), 2015, 20(1): 56-60. |
[7] | GUO Tian-li (郭甜莉), LIU Qie-gen (刘且根), LUO Jian-hua* (骆建华). Filter Bank Based Nonlocal Means for Denoising Magnetic Resonance Images[J]. 上海交通大学学报(英文版), 2014, 19(1): 72-78. |
[8] | ZHANG Qiang1* (张 强), CAI Yun-ze1 (蔡云泽), XU Xiao-ming1,2,3 (许晓鸣). Orthogonal Discriminant Improved Local Tangent Space Alignment Based Feature Fusion for Face Recognition[J]. 上海交通大学学报(英文版), 2013, 18(4): 425-433. |
[9] | XIE Rong-shenga* (谢荣生), WU Ke-shoua (吴克寿), XU Gao-pana (许高攀), OUYANG Miaob (欧阳苗). Research on Anti-Counterfeiting Quick Response 2D Barcode Techniques Based on Digital Watermark[J]. 上海交通大学学报(英文版), 2013, 18(4): 443-447. |
[10] | ZHAO Hai-bo (赵海波), PEI Jin-ze (裴晋泽), ZHAO Lei-ming (赵雷鸣), HU Guang-ru. Chaff Cloud Jamming Suppression Based on Wavelet Transform[J]. 上海交通大学学报(英文版), 2011, 16(6): 704-707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||