[1] |
ˇSari′c F, Glavaˇs G, Karan M, et al. Takelab:Systems for measuring semantic text similarity[C]//Proceedings of the First Joint Conference on Lexical and Computational Semantics. Montreal, Canada:Association for Computational Linguistics, 2012: 441-448.
|
[2] |
B¨ar D, Biemann C, Gurevych I, et al. Ukp: Computing semantic textual similarity by combining multiple content similarity measures [C]//Proceedings of the First Joint Conference on Lexical and Computational Semantics. Montreal, Canada: Association for Computational Linguistics, 2012: 435-440.
|
[3] |
Fr¨ohlich H, Chapelle O, Sch¨olkopf B. Feature selection for support vector machines by means of genetic algorithm [C]//Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence.Washington, DC, USA: IEEE, 2003: 142-148.
|
[4] |
Huang C L, Wang C J. A GA-based feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006,31(2): 231-240.
|
[5] |
John G H, Kohavi R, Pfleger K. Irrelevant features and the subset selection problem [C]//Proceedings on Machine Learning’94. [s. l.]: Morgan Kauffmann Publishers,1994: 121-129.
|
[6] |
Kohavi R, John G H. Wrappers for feature subset selection [J]. Artificial Intelligence, 1997, 97(1): 273-324.
|
[7] |
Witten I H, Frank E. Data mining: Practical machine learning tools and techniques [M]. Burlington,Massachusetts, USA: Morgan Kaufmann Publishers,2005.
|
[8] |
Vapnik V. The nature of statistical learning theory[M]. Berlin, Germany: Springer-Verlag, 2000.
|
[9] |
Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [J]. Advances in Neural Information Processing Systems, 1997, 9: 155-161.
|
[10] |
Sch¨olkopf B, Smola A J. Learning with kernels:Support vector machines, regularization, optimization,and beyond [M]. Cambridge MA, USA: MIT press,2002.
|
[11] |
Smola A J, Sch¨olkopf B. A tutorial on support vector regression [J]. Statistics and Computing, 2004,14(3): 199-222.
|
[12] |
Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, regression estimation,and signal processing [J]. Advances in Neural Information Processing Systems, 1997, 9: 281-287.
|
[13] |
Bennett K P, Mangasarian O L. Robust linear programming discrimination of two linearly inseparable sets [J]. Optimization Methods and Software, 1992,1(1): 23-34.
|
[14] |
Cortes C, Vapnik V. Support-vector networks [J].Machine Learning, 1995, 20(3): 273-297.
|
[15] |
Salzberg S L. On comparing classifiers: Pitfalls to avoid and a recommended approach [J]. Data Mining and Knowledge Discovery, 1997, 1(3): 317-328.
|
[16] |
Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [R]. Taipei, China: Department of Computer Science, National Taiwan University,2003.
|
[17] |
Chang C C, Lin C J. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
|