J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (4): 689-701.doi: 10.1007/s12204-024-2728-x
• • 上一篇
武晓晶,曹童瑶,甄然,李志杰
接受日期:
2023-09-05
出版日期:
2024-07-28
发布日期:
2024-07-28
WU Xiaojing∗(武晓晶), CAO Tongyao (曹童瑶), ZHEN Ran (甄然), LI Zhijie (李志杰)
Accepted:
2023-09-05
Online:
2024-07-28
Published:
2024-07-28
摘要: 本文研究了具有切换拓扑和非合作目标的无人机集群系统的时变编队合围跟踪控制问题,其中无人机集群系统由一个跟踪领导者、多个编队领导者和跟随者组成。编队领导者需要去完成预定的时变编队并追踪上跟踪领导者期望的轨迹,并且跟随者的状态收敛到编队领导者的状态所形成的凸包内。首先,提出了一种包含相邻相对信息的编队合围跟踪协议,且给出了编队跟踪的可行性条件和代数黎卡提方程;然后,通过构造合理的李雅普诺夫函数,证明了所设计控制协议下控制系统的稳定性。最后,通过仿真算例验证了理论结果的有效性。仿真结果表明,编队跟踪误差和合围误差都是收敛的,从而系统可以很好地完成编队合围跟踪控制。实际战场上,战斗无人机需要追逐和攻击敌对无人机,但有时多无人机协同作战进行军事拦截时,就会出现编队合围跟踪控制。
中图分类号:
武晓晶,曹童瑶,甄然,李志杰. 基于切换拓扑和非合作目标的无人机群系统的时变编队合围跟踪控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 689-701.
WU Xiaojing∗(武晓晶), CAO Tongyao (曹童瑶), ZHEN Ran (甄然), LI Zhijie (李志杰). AlgoTime-Varying Formation-Containment Tracking Control for Unmanned Aerial Vehicle Swarm Systems with Switching Topologies and a Non-Cooperative Target[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 689-701.
[1] HE W, ZHANG S. Control design for nonlinear flexible wings of a robotic aircraft [J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 351-357.
[2] HAN J L, CHEN Y Q. Multiple UAV formations for cooperative source seeking and contour mapping of a radiative signal field [J]. Journal of Intelligent & Robotic Systems, 2014, 74(1): 323-332.
[3] WILLIAMSON W R, ABDEL-HAFEZ M F, RHEE I, et al. An instrumentation system applied to formation flight [J]. IEEE Transactions on Control Systems Technology, 2007, 15(1): 75-85.
[4] MAZA I, KONDAK K, BERNARD M, et al. MultiUAV cooperation and control for load transportation and deployment [J]. Journal of Intelligent and Robotic Systems, 2010, 57(1): 417-449.
[5] SUH J, YOU S, CHOI S, et al. Vision-based coordinated localization for mobile sensor networks [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 611-620.
[6] YUN B, CHEN B M, LUM K Y, et al. Design and implementation of a leader-follower cooperative control system for unmanned helicopters [J]. Journal of Control Theory and Applications, 2010, 8(1): 61-68.
[7] LI N H M, LIU H H T. Formation UAV flight control using virtual structure and motion synchronization [C]//2008 American Control Conference. Seattle: IEEE, 2008: 1782-1787.
[8] QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks [J]. Control Theory & Applications, 2015, 32(10): 1298-1304 (in Chinese).
[9] KURIKI Y, NAMERIKAWA T. Consensus-based cooperative formation control with collision avoidance for a multi-UAV system [C]//2014 American Control Conference. Portland: IEEE, 2014: 2077-2082.
[10] WANG P, ZHANG Z F, CAO M C, et al. Research status and development of multi-UAVs formation based on consensus [J]. Ship Electronic Engineering, 2017, 37(9): 1-9 (in Chinese).
[11] ABDESSAMEUD A, TAYEBI A. Formation control of VTOL Unmanned Aerial Vehicles with communication delays [J]. Automatica, 2011, 47(11): 2383-2394.
[12] WANG D D, ZONG Q, ZHANG B Y. Distributed adaptive finite-time formation control of multiple UAV helicopter system [C]//2018 37th Chinese ControlConference. Wuhan: IEEE, 2018: 2631-2636.
[13] HUA Y Z, DONG X W, LI Q D, et al. Fault-tolerant time-varying formation control for second-order multiagent systems with directed topologies [C]//2017 13th IEEE International Conference on Control & Automation. Ohrid: IEEE, 2017: 467-472.
[14] ZHENG Y S, ZHAO Q, MA J Y, et al. Second-order consensus of hybrid multi-agent systems [J]. Systems & Control Letters, 2019, 125: 51-58.
[15] HOSSEINZADEH YAMCHI M, MAHBOOBI ESFANJANI R. Distributed predictive formation control of networked mobile robots subject to communication delay [J]. Robotics and Autonomous Systems, 2017, 91: 194-207.
[16] JI X K, HAI J T, LUO W G, et al. Obstacle avoidance in multi-agent formation process based on deep reinforcement learning [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 680-685.
[17] WANG J, SHI L R. Semi-global consensus problems of discrete-time multi-agent systems in the presence of input constraints [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 288-298.
[18] WANG P, JIA Y M. Distributed containment control of second-order multi-agent systems with inherent nonlinear dynamics [J]. IET Control Theory & Applications, 2014, 8(4): 277-287.
[19] LI T, LI Z P, FEI S M, et al. Second-order eventtriggered adaptive containment control for a class of multi-agent systems [J]. ISA Transactions, 2020, 96: 132-142.
[20] LI Z K, REN W, LIU X D, et al. Distributed containment control of multi-agent systems with general
linear dynamics in the presence of multiple leaders [J].
International Journal of Robust and Nonlinear Control, 2013, 23(5): 534-547.
[21] LI P Y, JABBARI F, SUN X M. Containment control of multi-agent systems with input saturation and
unknown leader inputs [J]. Automatica, 2021, 130:
109677.
[22] WANG Y Q, WU Q H, WANG Y. Containment control for multiple quadrotors with stationary leaders under directed graphs [C]//2012 IEEE 51st IEEE Conference on Decision and Control. Maui: IEEE, 2012:
2781-2786.
[23] DONG X W, HUA Y Z, ZHOU Y, et al. Theory and
experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems [J].
IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229-240.
[24] CHEN L M, LI C J, GUO Y N, et al. Formationcontainment control of multi-agent systems with communication delays [J]. ISA Transactions, 2022, 128(Pt
A): 32-43.
[25] DONG X W, SHI Z Y, LU G, et al. Formationcontainment analysis and design for high-order linear
time-invariant swarm systems [J]. International Journal of Robust and Nonlinear Control, 2015, 25(17):
3439-3456.
[26] ZHANG J X, SU H S. Formation-containment control
for multi-agent systems with sampled data and time
delays [J]. Neurocomputing, 2021, 424: 125-131.
[27] GAO Z Y, ZHANG H G, WANG Y C, et al. Timevarying output formation-containment control for homogeneous/heterogeneous descriptor fractional-order
multi-agent systems [J]. Information Sciences, 2021,
567: 146-166.
[28] CAI Y L, ZHANG H G, WANG Y C, et al. Adaptive
bipartite fixed-time time-varying output formationcontainment tracking of heterogeneous linear multiagent systems [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4688-4698.
[29] XU B, WANG Z Y, LI W H, et al. Distributed robust
model predictive control-based formation-containment
tracking control for autonomous underwater vehicles
[J]. Ocean Engineering, 2023, 283: 115210.
[30] HUA Y Z, DONG X W, HAN L, et al. Formationcontainment tracking for general linear multi-agent
systems with a tracking-leader of unknown control input [J]. Systems & Control Letters, 2018, 122: 67-76.
[31] LIAO R W, HAN L, DONG X W, et al. Finitetime formation-containment tracking for second-order
multi-agent systems with a virtual leader of fully unknown input [J]. Neurocomputing, 2020, 415: 234-246.
[32] LU Y Z, DONG X W, LI Q D, et al. Time-varying
group formation-containment tracking control for general linear multiagent systems with unknown inputs
[J]. IEEE Transactions on Cybernetics, 2022, 52(10):
11055-11067.
[33] ZHANG X Y, WU J, ZHAN X S, et al. Observer-based
adaptive time-varying formation-containment tracking
for multiagent system with bounded unknown input
[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1479-1491.
[34] CHEN L J, HAN T, XIAO B, et al. Predefined-time hierarchical controller-estimator time-varying formationcontainment tracking for multiple Euler-Lagrange systems with two-layer leaders [J]. Journal of the Franklin
Institute, 2023, 360(7): 5242-5266.
[35] WEI Z Q, WENG Z M, HUA Y Z, et al. Formationcontainment tracking control for heterogeneous unmanned swarm systems with switching topologies [J].
Acta Aeronautica ET Astronautica Sinica, 2021, 44(2):
252-267 (in Chinese).
[36] NI W, CHENG D Z. Leader-following consensus of
multi-agent systems under fixed and switching topologies [J]. Systems & Control Letters, 2010, 59(3/4):
209-217.
[37] ZHENG R H, LIU Y H, SUN D. Enclosing a target by
nonholonomic mobile robots with bearing-only measurements [J]. Automatica, 2015, 53: 400-407. |
[1] | 金飞宇,陈龙胜,李统帅,石童昕. 高阶MIMO非线性多智能体系统分布式协同抗干扰控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 656-666. |
[2] | 穆建彬,杨海丽,何德峰. 基于控制屏障函数的自主移动机器人安全编队分布式模型预测控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 678-688. |
[3] | 吴治海,谢林柏. 异步自我感知功能失效下双积分多智能体系统的容错动态一致性[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 613-624. |
[4] | 邢优靖1,高金凤1,刘小平1, 2, 吴平1. 带有时延和切换拓扑的二阶非线性多智能体系统事件触发固定时间一致性[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 625-639. |
[5] | 王晓静1,刘晓华2,高荣2. 具有状态时滞的奇异随机系统基于滚动时域控制的镇定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 436-449. |
[6] | 王丽1,张旭毅2,姚亚兵3,尉雪龙4. 基于信息传播的动态自相似kc中心网络[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 480-491. |
[7] | . 恶劣行驶条件下无人车辆路径跟踪串级优化控制[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 114-125. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 671-679. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 680-687. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 688-698. |
[11] | LI Bin (李 斌), WAN Yi-ming (万一鸣), YE Hao (叶 昊) . Fault Detection of Networked Control Systems with Uncertain Time-Varying Delay and Quantization Error[J]. 上海交通大学学报(英文版), 2011, 16(5): 513-518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||