J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1037-1049.doi: 10.1007/s12204-022-2503-9
卢鹏丽1,陈玮1,郭育红2,陈娅红3
接受日期:
2021-07-01
出版日期:
2024-11-28
发布日期:
2024-11-28
LU Pengli1∗ (卢鹏丽), CHEN Wei1 (陈玮), GUO Yuhong2 (郭育红), CHEN Yahong3 (陈娅红)
Accepted:
2021-07-01
Online:
2024-11-28
Published:
2024-11-28
摘要: 复杂网络中一个重要问题是确定有影响力的节点,主要用于理解和控制信息传播、疾病扩散等。目前的节点中心性算法主要关注单一的属性或者是手动提取属性,这导致节点全局重要性难以捕获。提出了基于对称非负矩阵分解(SNMF)的一个新的节点中性算法,称为VCSNMF。为了强调网络的属性,通过加权线性组合邻接矩阵和度矩阵来融合表示网络的初始数据。首先,对称非负矩阵分解通过分解初始数据矩阵来自动提取节点的潜在特征;然后,证明了每个节点的组合特征由网络的谱半径对应的特征向量得到的一维向量矩阵构成,或者是在超空间上的向量矩阵构成;最后,VCSNMF通过融合组合特征和网络拓扑特征来衡量节点的重要性。为了验证VCSNMF算法的有效性,在10个真实网络上,与已有的8个节点中心性算法进行了对比,实验结果验证了本算法的优越性。
中图分类号:
卢鹏丽1, 陈玮1, 郭育红2, 陈娅红3. 复杂网络中对称非负矩阵分解的节点中心性算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1037-1049.
LU Pengli1∗ (卢鹏丽), CHEN Wei1 (陈玮), GUO Yuhong2 (郭育红), CHEN Yahong3 (陈娅红). Symmetric Nonnegative Matrix Factorization for Vertex Centrality in Complex Networks[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1037-1049.
[1] BORGE-HOLTHOEFER J, MORENO Y. Absence of influential spreaders in rumor dynamics [J]. Physical Review E, 2012, 85(2 Pt 2): 026116. [2] ZHANG Y M, LIU F, KOURA Y H, et al. Dynamics of a delayed interactive model applied to information dissemination in social networks [J]. Mathematical Problems in Engineering, 2021, 2021: 6611168. [3] ZHANG X H, ZHU J, WANG Q, et al. Identifying influential nodes in complex networks with community structure [J]. Knowledge-Based Systems, 2013, 42: 74-84. [4] OMAR K M, HERZALLAH F A, AYYASH M M. The impact of viral marketing strategy via social network sites on student’s image: A case study at Palestine Technical University-Kadoorie [J]. Journal of Theoretical and Applied Information Technology, 2021, 99(2):420-435. [5] SUNG E C. The effects of augmented reality mobile app advertising: Viral marketing via shared social experience [J]. Journal of Business Research, 2021, 122:75-87. [6] MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation [J].Nature, 2015, 524(7563): 65-68. [7] WANG R J. Local information based model for epidemic controlling on multiplex networks [C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Chongqing: IEEE, 2020: 20-24. [8] MA X K, SUN P G, GONG M G. An integrative framework of heterogeneous genomic data for cancer dynamic modules based on matrix decomposition [J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(1): 305-316. [9] FREEMAN L C. Centrality in social networks conceptual clarification [J]. Social Networks, 1978, 1(3):215-239. [10] FREEMAN L C. A set of measures of centrality based on betweenness [J]. Sociometry, 1977, 40(1): 35. [11] SABIDUSSI G. The centrality index of a graph [J].Psychometrika, 1966, 31(4): 581-603. [12] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks [J].Nature Physics, 2010, 6(11): 888-893. [13] BONACICH P. Factoring and weighting approaches to status scores and clique identification [J]. The Journal of Mathematical Sociology, 1972, 2(1): 113-120. [14] LIU Z H, JIANG C, WANG J Y, et al. The node importance in actual complex networks based on a multiattribute ranking method [J]. Knowledge-Based Systems, 2015, 84: 56-66. [15] ZAREIE A, SHEIKHAHMADI A. A hierarchical approach for influential node ranking in complex social networks [J]. Expert Systems with Applications, 2018,93: 200-211. [16] LI C, WANG L, SUN S W, et al. Identification of influential spreaders based on classified neighbors in realworld complex networks [J]. Applied Mathematics and Computation, 2018, 320: 512-523. [17] SALAVATI C, ABDOLLAHPOURI A, MANBARI Z.BridgeRank: A novel fast centrality measure based on local structure of the network [J]. Physica A: Statistical Mechanics and its Applications, 2018, 496: 635-653. [18] ZHAO Z J, GUO Q, YU K, et al. Identifying influential nodes for the networks with community structure [J].Physica A: Statistical Mechanics and Its Applications,2020, 551: 123893. [19] BERTUCCI F, NG C K Y, PATSOURIS A, et al. Genomic characterization of metastatic breast cancers [J].Nature, 2019, 569(7757): 560-564. [20] SHEREKAR S, VISWANATHAN G A. Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics [J]. Computational and Systems Oncology, 2021, 1(2): e1017. [21] ZHANG Z Y, WANG Y, AHN Y Y. Overlapping community detection in complex networks using symmetric binary matrix factorization [J]. Physical Review E,2013, 87(6): 062803. [22] WASSERMAN S, FAUST K. Social network analysis:Methods and applications [M]. Cambridge: Cambridge University Press, 1994. [23] LI M T, ZHANG R S, HU R J, et al. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient [J]. International Journal of Modern Physics B,2018, 32(6): 1850118. [24] FEI L G, ZHANG Q, DENG Y. Identifying influential nodes in complex networks based on the inverse-square law [J]. Physica A: Statistical Mechanics and its Applications, 2018, 512: 1044-1059. [25] SHENG J F, DAI J Y, WANG B, et al. Identifying influential nodes in complex networks based on global and local structure [J]. Physica A: Statistical Mechanics and its Applications, 2020, 541: 123262. [26] ZHAO J, WANG Y C, DENG Y. Identifying influential nodes in complex networks from global perspective [J].Chaos, Solitons & Fractals, 2020, 133: 109637. [27] GU M, EISENSTAT S C. Efficient algorithms for computing a strong rank-revealing QR factorization [J].SIAM Journal on Scientific Computing, 1996, 17(4):848-869. [28] ACAR E, DUNLAVY D M, KOLDA T G. Link prediction on evolving data using matrix and tensor factorizations [C]//2009 IEEE International Conference on Data Mining Workshops. Miami: IEEE, 2009: 262-269. [29] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization [M]// Advances in neural information processing systems 13. Red Hook: Curran Associates Inc., 2000. [30] BROUWER A E, HAEMERS W H. Spectra of graphs[M]. New York: Springer, 2012: 25-26. [31] BAPAT R B, RAGHAVAN T E S. Nonnegative matrices and applications [M]. Cambridge: Cambridge University Press, 1997: 17. [32] BIGGS N. Algebraic graph theory [M]. Cambridge:Cambridge University Press, 1974: 13. [33] HORN R A. The Hadamard product [C]// Symposia in Applied Mathematics. Providence: AMS, 1990: 87-169. [34] ZACHARY W W. An information flow model for conflict and fission in small groups [J]. Journal of Anthropological Research, 1977, 33(4): 452-473. [35] LUSSEAU D, SCHNEIDER K, BOISSEAU O J, et al.The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations [J]. Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405. [36] GLEISER P M, DANON L. Community structure in jazz [J]. Advances in Complex Systems, 2003, 6(4):565-573. [37] LV Z W, ZHAO N, XIONG F, et al. A novel measure of identifying influential nodes in complex networks [J].Physica A: Statistical Mechanics and Its Applications, 2019, 523: 488-497. [38] GUIMERA R, DANON L, DIAZ-GUILERA A, et al.Self-similar community structure in a network of human interactions [J]. Physical Review E, 2003, 68(6):065103. [39] ADAMIC L A, GLANCE N. The political blogosphere and the 2004 US election: Divided they blog [C]// 3rd International Workshop on Link Discovery. Chicago: ACM, 2005: 36-43. [40] JEONG H, MASON S P, BARABASI A L, et al.Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41-42. [41] ZAREIE A, SHEIKHAHMADI A, JALILI M. Influential node ranking in social networks based on neighborhood diversity [J]. Future Generation Computer Systems, 2019, 94: 120-129. [42] MCAULEY J, LESKOVEC J. Learning to discover social circles in ego networks [M]// Advances in neural information processing systems 25. Red Hook: Curran Associates Inc., 2012: 539-547. [43] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks [J]. Nature, 1998, 393(6684):440-442. [44] HUANG C Y, LEE C L, WEN T H, et al. A computer virus spreading model based on resource limitations and interaction costs [J]. Journal of Systems and Software, 2013, 86(3): 801-808. [45] KENDALL M G. The treatment of ties in ranking problems [J]. Biometrika, 1945, 33(3): 239-251. [46] BAE J, KIM S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness [J]. Physica A: Statistical Mechanics and Its Applications, 2014, 395: 549-559. [47] WEBBER W, MOFFAT A, ZOBEL J. A similarity measure for indefinite rankings [J]. ACM Transactions on Information Systems, 2010, 28(4): 20. |
[1] | 范宏, 何杰, 田书欣. 变步长仿真与改进熵权法联动的综合能源系统鲁棒性评估方法[J]. 上海交通大学学报, 2024, 58(1): 59-68. |
[2] | 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 29-38. |
[3] | 谢逢洁. 复杂网络上博弈行为演化的合作激励[J]. 上海交通大学学报(自然版), 2015, 49(08): 1256-1262. |
[4] | 郑茂,王超,黄胜. 舰载机出动回收网络鲁棒性分析[J]. 上海交通大学学报(自然版), 2013, 47(12): 1934-1939. |
[5] | 王昊翔,曾珊,刘挥扬. 虚拟社交网络中节点重要度分析[J]. 上海交通大学学报(自然版), 2013, 47(07): 1055-1059. |
[6] | 杨波, 陈影. 抽样对复杂网络生长机制的影响 [J]. 上海交通大学学报(自然版), 2013, 47(03): 479-483. |
[7] | 周炎,刘亚冰,汪小帆. 一种基于层次化社团结构的复杂网络可视化平台[J]. 上海交通大学学报(自然版), 2010, 44(03): 332-0335. |
[8] | 闫妍,刘晓,庄新田. 基于复杂网络理论的供应链级联效应检测方法[J]. 上海交通大学学报(自然版), 2010, 44(03): 0-0325. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||