Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (Sup. 1): 56-61.doi: 10.1007/s12204-018-2023-9
YU Liang (余亮), YAN Li (严莉), CHEN Mengjie (陈梦婕), DONG Liangchao (董良超)
出版日期:
2018-12-28
发布日期:
2018-12-26
通讯作者:
YU Liang (余亮)
E-mail: liang.yu@sjtu.edu.cn
YU Liang (余亮), YAN Li (严莉), CHEN Mengjie (陈梦婕), DONG Liangchao (董良超)
Online:
2018-12-28
Published:
2018-12-26
Contact:
YU Liang (余亮)
E-mail: liang.yu@sjtu.edu.cn
摘要: Cerebral palsy (CP) is a group of permanent movement disorders that appear in early childhood. The electromyography (EMG) signal analysis and the gait analysis are two most commonly used methods in the clinic. In this paper, a cyclostationary model of the EMG signal is proposed. The model can combine the aforementioned two methods. The EMG signal acquired during the gait cycles is assumed to be cyclostationary due to the physiological characteristics of the EMG signal production. Then, the spectral correlation density is used to analyze the cyclic frequency (corresponding to the gait cycles) and spectral frequency (the frequency of EMG signal) in a waterfall representation of the two kinds of frequencies. The experiments show that the asymptomatic (normal) subjects and symptomatic subjects (with CP) can be distinguished from the spectral correlation density in a range of cyclic frequencies.
中图分类号:
YU Liang (余亮), YAN Li (严莉), CHEN Mengjie (陈梦婕), DONG Liangchao (董良超). Cyclostationary Modeling of Surface Electromyography Signal During Gait Cycles and Its Application for Cerebral Palsy Diagnosis[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 56-61.
YU Liang (余亮), YAN Li (严莉), CHEN Mengjie (陈梦婕), DONG Liangchao (董良超). Cyclostationary Modeling of Surface Electromyography Signal During Gait Cycles and Its Application for Cerebral Palsy Diagnosis[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 56-61.
[1] | RICHARDS C L, MALOUIN F. Cerebral palsy: Definition,assessment and rehabilitation [J]. Handbook ofClinical Neurology, 2013, 111: 183-195. |
[2] | BINDER H, ENG G D. Rehabilitation managementof children with spastic diplegic cerebral palsy[J]. Archives of Physical Medicine and RehabilitationHome, 1989, 70(6): 482-489. |
[3] | BELL K J, ?OUNPUU S, DELUCA P A, et al. Naturalprogression of gait in children with cerebral palsy [J].Journal of Pediatric Orthopaedics, 2002, 22(5): 677-682. |
[4] | ROMEO D M M, GUZZETTA A, SCOTO M, et al.Early neurologic assessment in preterm-infants: Integrationof traditional neurologic examination and observationof general movements [J]. European Journalof Paediatric Neurology, 2008, 12: 183-189. |
[5] | TREMBLAY F, MALOUIN F, RICHARDS C L, etal. Effects of prolonged muscle stretch on reflex andvoluntary muscle activations in children with spasticcerebral palsy [J]. Scandinavian Journal of RehabilitationMedicine, 1990, 22(4): 171-80. |
[6] | DAMIANO D L, KELLY L E, VAUGHN C L. Effectsof quadriceps femoris strengthening on crouch gait inchildren with spastic diplegia [J]. Physical Therapy,1995, 75(8): 658-667. |
[7] | MURARY M P. Gait as a total pattern of movement[J]. American Journal of Physical Medicine, 1967,46(1): 290-332. |
[8] | DELUCA P A, DAVIS R B, OUNPUU S, et al. Alternationsin surgical decision making in pations withcerebral palsy based on three-dimensional gait analysis[J]. Journal of Pediatric Orthopaedics, 1997, 17(5):608-614. |
[9] | KAY R M, DENNIS S, RETHLEFSEN S, et al. Theeffect of preoperative gait analysis on orthopaedic decisionmaking [J]. Clinical Orthopaedics and RelatedResearch, 2000, 372: 217-222. |
[10] | GRAUBERT C, SONG K M, MCLAUGHLIN J F, etal. Changes in gait at 1 year post-selective dorsal rhizotomy:Results of a prospective randomized study [J].Journal of Pediatric Orthopaedics, 2000, 20(4): 496-500. |
[11] | ZUMSTEG Z S, AHMED R E, SANTHANAM G, etal. Power feasibility of implantable digital spike sortingcircuits for neural prosthetic systems [J]. IEEE Transactionson Neural Systems and Rehabilitation Engineering,2005, 13(3): 237-240. |
[12] | WOLD S, ESBENSEN K, GELADI P. Principal componentanalysis [J]. Chemometrics and Intelligent LaboratorySystems, 1987, 2(1): 37-52. |
[13] | WANG W, STEFANO A D, ALLEN R. A simulationmodel of the surface EMG signal for analysis of muscleactivity during the gait cycle [J]. Computers in Biologyand Medicine, 2006, 36(6): 601-618. |
[14] | DUCH?ENE J, HOGREL J Y. A model of EMG generation[J]. IEEE Transactions on Biomedical Engineering,2000, 47(2): 192-201. |
[15] | BROWN B H, SMALLWOOD R H, BARBER D C,et al. Medical physics and biomedical engineering [M].New York, USA: Taylor & Francis Group, 1999. |
[16] | DIMITROV G V, DIMITROVA N A. Precise and fastcalculation of the motor unit potentials detected bya point and rectangular plate electrode [J]. MedicalEngineering & Physics, 1998, 20(5): 374-381. |
[17] | WILSON F N, MACLEOD A G, BARKER P S. Thedistribution of the action currents produced by heartmuscle and other excitable tissues immersed in extensiveconducting media [J]. Journal of General Physiology,1933, 16(3): 423-456. |
[18] | SHEMMELL J, JOHANSSON J, PORTRA V, et al.Control of interjoint coordination during the swingphase of normal gait at different speeds [J]. Journalof Neuro Engineering and Rehabilitation, 2007, 4(1):10-10. |
[19] | ANTONI J, RANDALL R B. A stochastic model forsimulation and diagnostics of rolling element bearingswith localized faults [J]. Journal of Vibration andAcoustics, 2003, 125: 282-289. |
[20] | HO D, RANDALL R B. Optimization of bearing diagnosticstechniques using simulated and actual bearingfault signals [J]. Mechanical Systems and Signal Processing,2000, 14(5): 763-788. |
[21] | ANTONI J, RANDALL R B. Differential diagnosis ofgear and bearing faults [J]. Journal of Vibration andAcoustics, 2002, 124: 165-171. |
[22] | FEHSKE A, GAEDDERT J, REED J H. A new approachto signal classification using spectral correlationand neural networks [C]//IEEE International Symposiumon New Frontiers in Dynamic Spectrum AccessNetworks. [s.l.]: IEEE, 2005: 144-150. |
[23] | ANTONI J. Cyclostationarity by examples [J]. MechanicalSystems and Signal Processing, 2009, 23: 987-1036. |
[24] | ANTONI J, XIN G, HAMZAOUI N. Fast computationof the spectral correlation [J]. Mechanical Systems andSignal Processing, 2017, 92: 248-277. |
[1] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[2] | 王雨坤, 丁显廷, 张执南. 基于四电极微流控装置使用介电泳分离循环肿瘤细胞的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 391-. |
[3] | 贺雨欣, 张文光, 胥浩天, 徐倚帆, 许李悦. 用于评价神经电极植入行为的精细化脑模型的建立及其模拟行为研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 401-. |
[4] | 吴辉,富荣昌,杨晓玉,李现政,王召耀. 三种不同血液粘度模型中分叉血流的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 450-. |
[5] | 胡颖涵1, 朱泽宇1, 滕 林2, 何雨石3, 邹德荣1 , 陆家瑜1. 多肽水凝胶在软骨再生工程中的应用[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 468-. |
[6] | 李健1, 2,朱晔1,关天民1. 考虑肌肉因素的脊柱侧弯矫正的数值模拟方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 486-. |
[7] | 刘阳1,2,王雅靖1,温大渭1,张全有1,王立1,安美文1,刘勇3. 基底刚度和拓扑结构对人体皮肤成纤维细胞形态的影响[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 495-. |
[8] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[9] | 贾菁怡1,李正裔1, 2,彭琳晶1,姚怡飞1. 深部组织压力损伤的早期检测方法:系统综述[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 526-. |
[10] | 高红岩1, 2, 艾孝杰1, 2, 孙正隆3, 陈卫东1, 2, 高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 168-175. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[15] | CHENG Rongshan, (程荣山), JIANG Ziang, (蒋子昂), DIMITRIOU Dimitris, GONG Weihua, (龚伟华), TSAI Tsung-Yuan, (蔡宗远). Biomechanical Analysis of Personalised 3D-Printed Clavicle Plates of Different Materials to Treat Midshaft Clavicle Fractures[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 259-266. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 453
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||