Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (6): 720-731.doi: 10.16183/j.cnki.jsjtu.2024.224
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHANG Li1, WANG Bao1, JIA Jianxiong1, SONG Zhumeng1, YE Yutong1, YU Yue1, LIN Jiaqing2, XU Xiaoyuan2()
Received:
2024-06-13
Accepted:
2024-10-28
Online:
2025-06-28
Published:
2025-07-04
Contact:
XU Xiaoyuan
E-mail:xuxiaoyuan@sjtu.edu.cn
CLC Number:
ZHANG Li, WANG Bao, JIA Jianxiong, SONG Zhumeng, YE Yutong, YU Yue, LIN Jiaqing, XU Xiaoyuan. End-to-End Collaborative Optimization Method for Microgrid Power Prediction and Optimal Scheduling[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 720-731.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2024.224
Tab.2
Parameters of microgrid distributed power source
分布式电源类型 | 参数 | 取值 |
---|---|---|
燃气轮机1,2 | 最大容量/kW | 600 |
向上爬坡速率/(kW·h-1) | 125 | |
向下爬坡速率/(kW·h-1) | 125 | |
成本系数,a/(元·kW-2) | 0.0002 | |
成本系数,b/(元·kW-2) | 0.386 | |
成本系数,c/元 | 0 | |
光伏电站1 | 最大容量/(kV·A) | 2000 |
光伏电站2 | 最大容量/(kV·A) | 2400 |
光伏电站3 | 最大容量/(kV·A) | 1800 |
储能设备1,2 | 电池容量/(kW·h) | 1600 |
最大充放电功率/kW | 500 | |
充放电效率 | 0.95 | |
荷电状态下限 | 0.1 | |
荷电状态上限 | 0.95 |
[1] | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046. |
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046. | |
[2] | 郑漳华, 艾芊. 微电网的研究现状及在我国的应用前景[J]. 电网技术, 2008, 32(16): 27-31. |
ZHENG Zhanghua, AI Qian. Present situation of research on microgrid and its application prospects in China[J]. Power System Technology, 2008, 32(16): 27-31. | |
[3] | 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. |
YANG Xinfa, SU Jian, LÜ Zhipeng, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70. | |
[4] | FAN H, LI Y L, YU B, et al. Stochastic optimal source-load-storage coordinated dispatch in microgird[C]// 2020 International Conference on Smart Grids and Energy Systems. Perth, Australia: IEEE, 2020: 746-750. |
[5] | PEKASLAN D, WAGNER C, GARIBALDI J M, et al. Uncertainty-aware forecasting of renewable energy sources[C]// 2020 IEEE International Conference on Big Data and Smart Computing. Busan, Korea: IEEE, 2020: 240-246. |
[6] | 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022. |
LIU Yixin, GUO Li, WANG Chengshan. Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022. | |
[7] | FAN H Z, ZHANG G R, ZHANG Y, et al. Multiple time-scale optimization scheduling for microgrids[C]// 2018 Chinese Automation Congress. Xi’an, China: IEEE, 2018: 3544-3549. |
[8] | KLOUBERT M L, SCHWIPPE J, MÜLLER S C, et al. Analyzing the impact of forecasting errors on redispatch and control reserve activation in congested transmission networks[C]// 2015 IEEE Eindhoven PowerTech. Eindhoven, Netherlands: IEEE, 2015: 1-6. |
[9] | MORALES J M, MUÑOZ M A, PINEDA S. Prescribing net demand for two-stage electricity generation scheduling[J]. Operations Research Perspectives, 2023, 10: 100268. |
[10] | SANG L W, XU Y L, LONG H, et al. Safety-aware semi-end-to-end coordinated decision model for voltage regulation in active distribution network[J]. IEEE Transactions on Smart Grid, 2023, 14(3): 1814-1826. |
[11] | WAHDANY D, SCHMITT C, CREMER J L. More than accuracy: End-to-end wind power forecasting that optimises the energy system[J]. Electric Power Systems Research, 2023, 221: 109384. |
[12] | CHEN X B, YANG Y F, LIU Y K, et al. Feature-driven economic improvement for network-constrained unit commitment: A closed-loop predict-and-optimize framework[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3104-3118. |
[13] | FISHER M L. The Lagrangian relaxation method for solving integer programming problems[J]. Management Science, 1981, 27(1): 1-18. |
[14] | LI G, CHIANG H D. Toward cost-oriented forecasting of wind power generation[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2508-2517. |
[15] | ZHOU X, WANG J Y, WANG X Y, et al. Deep reinforcement learning for microgrid operation optimization: A review[C]// 2023 8th Asia Conference on Power and Electrical Engineering, Tianjin, China: IEEE, 2023: 2059-2065. |
[16] | CHAKRABORTY S, SIMOES M G. PV-microgrid operational cost minimization by neural forecasting and heuristic optimization[C]// 2008 IEEE Industry Applications Society Annual Meeting. Edmonton, Canada: IEEE, 2008: 1-8. |
[17] | MU C X, SHI Y K, XU N, et al. Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2024, 15(3): 2957-2970. |
[18] | BARREDO ARRIETA A, DÍAZ-RODRÍGUEZ N, DEL SER J, et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[J]. Information Fusion, 2020, 58: 82-115. |
[19] | 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. |
WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. | |
[20] | LI L, XU S Y. Optimal day-ahead scheduling of microgrid participating in energy and spinning reserve markets[C]// 2020 5th Asia Conference on Power and Electrical Engineering, Chengdu, China: IEEE, 2020: 1049-1055. |
[21] | FARIVAR M, LOW S H. Branch flow model: Relaxations and convexification: Part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564. |
[22] | XIAO L, WANG J Z, DONG Y, et al. Combined forecasting models for wind energy forecasting: A case study in China[J]. Renewable & Sustainable Energy Reviews, 2015, 44: 271-288. |
[23] | 张国强, 张伯明. 基于组合预测的风电场风速及风电机功率预测[J]. 电力系统自动化, 2009, 33(18): 92-95. |
ZHANG Guoqiang, ZHANG Boming. Wind speed and wind turbine output forecast based on combination method[J]. Automation of Electric Power Systems, 2009, 33(18): 92-95. | |
[24] | WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: An overview[J]. Soft Computing, 2018, 22(2): 387-408. |
[25] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95-International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948. |
[26] | AWAD M, KHANNA R. Support vector regression[M]//Efficient learning machines. Berkeley, USA: Apress, 2015: 67-80. |
[27] | POPESCU M-C, BALAS V E, PERESCU-POPESCU L, et al. Multilayer perceptron and neural networks[J]. WSEAS Transactions on Circuits & Systems, 2009, 8(7): 579-588. |
[28] | SEGAL M R. Machine learning benchmarks and random forest regression[DB/OL]. (2003-04-14)[2024-06-12]. https://escholarship.org/uc/item/35x3v9t4. |
[29] | GURYANOV A. Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees[M]//Lecture notes in computer science. Cham: Springer, 2019: 39-50. |
[30] | DOLATABADI S H, GHORBANIAN M, SIANO P, et al. An enhanced IEEE 33 bus benchmark test system for distribution system studies[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2565-2572. |
[31] | 陈池瑶, 苗世洪, 姚福星, 等. 基于多智能体算法的多微电网-配电网分层协同调度策略[J]. 电力系统自动化, 2023, 47(10): 57-65. |
CHEN Chiyao, MIAO Shihong, YAO Fuxing, et al. Hierarchical cooperative dispatching strategy of multi-microgrid and distribution networks based on multi-agent algorithm[J]. Automation of Electric Power Systems, 2023, 47(10): 57-65. | |
[32] | HONG T, PINSON P, FAN S, et al. Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond[J]. International Journal of Forecasting, 2016, 32(3): 896-913. |
[33] | CHAI Y Y, GUO L, WANG C S, et al. Network partition and voltage coordination control for distribution networks with high penetration of distributed PV units[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3396-3407. |
[1] | ZENG Jincan, HE Gengsheng, LI Yaowang, DU Ershun, ZHANG Ning, ZHU Haojun. A Short-Term Carbon Emission Accounting Method for Power Industry Using Electricity Data Based on a Combined Model of CNN and LightGBM [J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 746-757. |
[2] | CHEN Shi, YANG Linsen, LIU Yihong, LUO Huan, ZANG Tianlei, ZHOU Buxiang. Optimal Scheduling Strategy of Newly-Built Microgrid in Small Sample Data-Driven Mode [J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 732-745. |
[3] | CUI Yiyang, PAN Dounan, LI Canbing, LIU Jianzhe. An Optimization Method for Iteration Path Search of Large-Scale Power Grid Unit Commitment State [J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 711-719. |
[4] | GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591. |
[5] | HUANG Yixiang, DOU Xun, LI Linxi, YANG Hanyu, YU Jiancheng, HUO Xianxu. Quantitative Method of Response Value of Integrated Energy Equipment Based on Global Sensitivity Analysis [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 569-579. |
[6] | LOU Wei, HU Rong, YU Jinming, ZHANG Xipeng, FAN Feilong, LIU Songyuan. Multi-Agent Coordinated Dispatch of Power Grid and Pumped Hydro Storage with Embedded Market Game Model [J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 365-375. |
[7] | WEI Maohua, YANG Ling, WENG Liangtao, YANG Jipei, CHEN Yongqiao. SOC Balancing Strategy for Distributed Energy Storage Units in Isolated DC Microgrids Considering Capacity Differences [J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 376-387. |
[8] | PENG Chaoyi, CHEN Wenzhe, XU Suyue, LI Jianshe, ZHOU Huafeng, GU Huijie, NIE Yongquan, SUN Haishun. Modeling of Cloud-Edge Collaborated Electricity Market Considering Flexible Ramping Products Provided by VPPs [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 186-199. |
[9] | SUN Xin, JIANG Hailin, XIE Jingdong, WANG Simin, WANG Sen. Charging and Discharging Scheduling Mechanism of Electric Vehicles in Park Based on User Credit Index [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 200-207. |
[10] | LI Jianlin, ZHANG Zedong, LIANG Ce, ZENG Fei. Multi-Objective Robustness of Integrated Energy System Considering Source-Load Uncertainty [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 175-185. |
[11] | ZHU Lan, ZHANG Xuehan, TANG Longjun, QIU Nianhang, TIAN Yingjie. A Combined Clearing Model of Electric Energy, Inertia, and Primary Frequency Regulation Considering Emergency Interruptible Load Service [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 16-27. |
[12] | HUANG Junxian, CHEN Chun, CAO Yijia, QUAN Shaoli, WANG Yi. Distribution Network Fault Risk Assessment Method Considering Difference in Entropy Value of Rare Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1857-1867. |
[13] | ZHAN Bochun, FENG Changsen, WANG Xiaohui, ZHANG Heng, MA Junwei, WEN Fushuan. A P2P Electricity-Carbon Trading Mechanism for Distributed Prosumers Based on Carbon Emission Flow Model [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1846-1856. |
[14] | ZHANG Xianwen, YIN Gaowen, SHEN Feifan, HUANG Sheng, WEI Juan. Bidding Strategies for Energy Storage Participation in Electricity Market Considering Uncertainty of Wind Power and Carbon Trading [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1868-1880. |
[15] | LI Wei, LI Ran, HU Yan, WANG Xiwei, XIONG Kang. Assessment Model for Interregional Electricity Price Difference and Cross-Regional Electricity Trading Volume Considering Carbon Cost [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1835-1845. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||