Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (8): 1216-1224.doi: 10.16183/j.cnki.jsjtu.2023.491
• Electronic Information and Electrical Engineering • Previous Articles
ZHANG Zhiyuan1, HU Jisu2, ZHANG Yueyue3, QIAN Xusheng2, ZHOU Zhiyong2, DAI Yakang1,2(
)
Received:2023-09-25
Revised:2023-11-08
Accepted:2023-11-24
Online:2025-08-28
Published:2025-08-26
Contact:
DAI Yakang
E-mail:daiyk@sibet.ac.cn
CLC Number:
ZHANG Zhiyuan, HU Jisu, ZHANG Yueyue, QIAN Xusheng, ZHOU Zhiyong, DAI Yakang. Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction[J]. Journal of Shanghai Jiao Tong University, 2025, 59(8): 1216-1224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.491
Tab.1
Ablation analysis of different components in proposed method
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| 基线 | 78.91±6.07 | 90.11±3.21 | 67.02±10.42 | 91.27±2.66 | 84.37±3.99 | 70.73±7.94 |
| 基线+MBALKA | 83.26±4.13 | 91.13±1.79 | 78.07±4.85 | 86.46±6.01 | 84.06±4.48 | 73.15±5.94 |
| 基线+MSFIFA | 81.16±5.21 | 90.82±1.70 | 74.74±15.09 | 87.74±6.22 | 84.04±2.83 | 72.96±6.47 |
| 基线+MBALKA+MSFIFA | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
Tab.2
Ablation analysis of single-task and multi-task in proposed method
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| 单任务 | 78.13±5.20 | 89.54±2.50 | 56.08±8.44 | 92.11±4.65 | 81.86±2.98 | 63.60±5.77 |
| 多任务 (等权重) | 82.82±4.54 | 90.69±2.54 | 69.30±16.73 | 90.80±5.72 | 84.68±3.06 | 71.25±7.84 |
| 多任务 (不确定权重) | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
Tab.3
Comparison of proposed method and other existing state-of-the-art single-task methods
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| CBAMResNet50[ | 78.83±5.01 | 89.33±3.68 | 58.25±12.11 | 90.79±5.12 | 81.55±4.44 | 63.88±9.64 |
| DenseNet121[ | 82.03±3.38 | 90.24±1.70 | 67.08±11.58 | 90.35±6.25 | 83.73±2.76 | 69.87±5.14 |
| EfficientNet[ | 80.10±6.68 | 88.25±3.84 | 64.74±5.55 | 87.36±11.00 | 80.93±8.67 | 66.82±10.87 |
| InceptionV4[ | 83.15±2.13 | 90.31±1.21 | 78.01±9.64 | 81.71±10.11 | 80.67±6.28 | 70.02±6.34 |
| SeResNet50[ | 83.30±4.80 | 90.30±3.18 | 73.63±2.41 | 92.14±4.50 | 86.88±3.58 | 76.34±5.13 |
| 本文方法 | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
Tab.4
Comparison of proposed method and other three multi-task methods
| 方法 | (平均值±方差)/% | |||||
|---|---|---|---|---|---|---|
| AUPRC | AUROC | SEN | SPE | ACC | F1 | |
| CMSVNet[ | 82.68±4.53 | 89.81±2.42 | 81.29±8.49 | 80.32±6.49 | 80.62±2.44 | 70.49±1.49 |
| MTTU-Net[ | 81.80±6.53 | 91.65±2.41 | 84.62±11.37 | 85.07±11.00 | 84.96±5.79 | 76.58±5.30 |
| PKAF-Net[ | 78.68±5.16 | 88.52±2.03 | 69.12±11.76 | 91.29±5.08 | 85.00±2.10 | 72.09±4.67 |
| 多任务 (不确定权重) | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
| [1] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA: A Cancer Journal for Clinicians, 2022, 72(1): 7-33. |
| [2] |
WILCZAK W, WITTMER C, CLAUDITZ T, et al. Marked prognostic impact of minimal lymphatic tumor spread in prostate cancer[J]. European Urology, 2018, 74(3): 376-386.
doi: S0302-2838(18)30423-8 pmid: 29908878 |
| [3] | 蒋璋栋, 吴开杰. 前列腺癌淋巴结转移分子机制的研究进展[J]. 现代泌尿外科杂志, 2022, 27(1): 79-83. |
| JIANG Zhangdong, WU Kaijie. Progress of molecular mechanism leading to lymph node metastasis in prostate cancer[J]. Journal of Modern Urology, 2022, 27(1): 79-83. | |
| [4] | YAKAR D, DEBATS O A, BOMERS J G R, et al. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer[J]. Journal of Magnetic Resonance Imaging: JMRI, 2012, 35(1): 20-31. |
| [5] | 扶昭, 陈燕清, 赵春丽, 等. 3.0 T MR扩散加权成像ADC值及ROC曲线分析对前列腺癌淋巴结转移的诊断价值[J]. 磁共振成像, 2021, 12(2): 49-51. |
| FU Zhao, CHEN Yanqing, ZHAO Chunli, et al. Value of 3.0 T MR diffusion-weighted imaging and ROC curve in diagnosis of lymph node metastasis in patients with prostate cancer[J]. Chinese Journal of Magnetic Resonance Imaging, 2021, 12(2): 49-51. | |
| [6] |
BREMBILLA G, DELL’OGLIO P, STABILE A, et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection[J]. European Radiology, 2018, 28(5): 1969-1976.
doi: 10.1007/s00330-017-5229-6 pmid: 29270644 |
| [7] | PORPIGLIA F, MANFREDI M, MELE F, et al. Indication to pelvic lymph nodes dissection for prostate cancer: The role of multiparametric magnetic resonance imaging when the risk of lymph nodes invasion according to Briganti updated nomogram is 5[J]. Prostate Cancer and Prostatic Diseases, 2018, 21(1): 85-91. |
| [8] |
FURUBAYASHI N, NEGISHI T, UOZUMI T, et al. Eliminating microscopic lymph node metastasis by performing pelvic lymph node dissection during radical prostatectomy for prostate cancer[J]. Molecular and Clinical Oncology, 2020, 12(2): 104-110.
doi: 10.3892/mco.2019.1965 pmid: 31929879 |
| [9] |
LIU X, TIAN J Y, WU J Y, et al. Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer[J]. BMC Medical Imaging, 2022, 22(1): 190.
doi: 10.1186/s12880-022-00905-3 pmid: 36333664 |
| [10] |
ZHENG H X, MIAO Q, LIU Y K, et al. Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer[J]. European Radiology, 2022, 32(8): 5688-5699.
doi: 10.1007/s00330-022-08625-6 pmid: 35238971 |
| [11] | HOU Y, BAO J, SONG Y, et al. Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer[J]. EBioMedicine, 2021, 68: 103395. |
| [12] | ZHOU Y, CHEN H J, LI Y F, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images[J]. Medical Image Analysis, 2021, 70: 101918. |
| [13] | CHENG J H, LIU J, KUANG H L, et al. A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1520-1532. |
| [14] | LAI H R, FU S R, ZHANG J, et al. Prior knowledge-aware fusion network for prediction of macrovascular invasion in hepatocellular carcinoma[J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2644-2657. |
| [15] | FUTREGA M, MILESI A, MARCINKIEWICZ M, et al. Optimized U-net for brain tumor segmentation[C]// International MICCAI Brainlesion Workshop. Cham: Springer, 2022: 15-29. |
| [16] | GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. |
| [17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems, New York, USA: Curran Associates Inc, 2017: 6000-6010. |
| [18] | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7482-7491. |
| [19] |
KLEIN S, STARING M, MURPHY K, et al. Elastix: A toolbox for intensity-based medical image registration[J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 196-205.
doi: 10.1109/TMI.2009.2035616 pmid: 19923044 |
| [20] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
doi: 10.1038/s41592-020-01008-z pmid: 33288961 |
| [21] | SAITO T, REHMSMEIER M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[J]. PLoS One, 2015, 10(3): e0118432. |
| [22] | LUQUE A, CARRASCO A, MARTÍN A, et al. The impact of class imbalance in classification performance metrics based on the binary confusion matrix[J]. Pattern Recognition, 2019, 91: 216-231. |
| [23] | LUO Y N, WANG Z S. An improved ResNet algorithm based on CBAM[C]// 2021 International Conference on Computer Network, Electronic and Automation. Xi’an, China: IEEE, 2021: 121-125. |
| [24] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2261-2269. |
| [25] | TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning, Long Beach, USA: PMLR, 2019: 6105-6114. |
| [26] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA: ACM, 2017: 4278-4284. |
| [27] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141. |
| [1] | WANG Hongxin, XU Degang, ZHOU Kaiwen, LI Linwen, WEN Xin. Data-Driven Method of Modeling Sparse Flow Field Data [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 684-690. |
| [2] | BAO Jiahan, SUN Deshang, HUANG Jianzhong, HU Zheng. FAST Algorithm for Accurate Corner Points Detection of Section Steel Based on Adaptive Threshold [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 691-702. |
| [3] | JI Mian, LIN Yanping, WANG Dongmei, CHEN Li, MA Xin. Precise Foot Feature Point Localization and Automatic Parameters Measurement [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 703-710. |
| [4] | ZHANG Aoyuan, HU Xiaofeng, ZHANG Yahui. Rescheduling of Multi-Scenario and Multi-Objective Dynamic Changes of Ship Group Construction [J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 476-488. |
| [5] | LIU Jianxin, PAN Ruru, ZHOU Jian. Unsupervised Fabric Defect Detection Based on Under-Complete Dictionary Reconstruction [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 283-292. |
| [6] | WANG Ke, LIU Yiyang, YANG Jie, LU Aiguo, LI Zhe, XU Mingliang. Landing State Recognition of Carrier-Based Aircraft Based on Adaptive Feature Enhancement and Fusion [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 274-282. |
| [7] | WANG Baokun, WANG Rulu, CHEN Jinjian, PAN Yue, WANG Lujie. Automatic Detection Method for Surface Diseases of Shield Tunnel Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1716-1723. |
| [8] | ZHANG Tao, ZHANG Xuerui, CHEN Yong, ZHONG Kelin, LUO Qijun. Airfield Multi-Scale Object Detection for Visual Navigation in Civil Aircraft [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1816-1825. |
| [9] | NIU Guochen, SUN Xiangyu, YUAN Zhengyan. Vehicle-Road Collaborative Perception Method Based on Dual-Stream Feature Extraction [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1826-1834. |
| [10] | QIN Jing, WEN Yuanbo, GAO Tao, LIU Yao. A Transformer-Based Diffusion Model for All-in-One Weather-Degraded Image Restoration [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1606-1617. |
| [11] | YOU Lijue, JIAO Shengpin, LI Xiaoyong. Optimization of Data Storage Performance in Medical PACS Imaging System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1629-1636. |
| [12] | LI Chunxi, QIAO Hanzhe, YAO Gang, JIANG Haoyu, CUI Xiangke, GE Quanbo. SOH Estimation Method Based on RBF-BLS for Low-Carbon and Safe Travel of Electric Vehicle [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1454-1464. |
| [13] | HU Zhiqiang, LIU Mingfei, LI Qi, LI Xinyu, BAO Jinsong. Modeling of Multi-Modal Knowledge Graph for Assembly Process of Wind Turbines with Multi-Source Heterogeneous Data [J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1249-1263. |
| [14] | HUANG He, HU Kaiyi, YANG Lan, WANG Hao, GAO Tao, WANG Huifeng. FPGA Design of Image Defogging System in Intelligent Tachograph [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 565-578. |
| [15] | XU Liangye, SHI Lianxing, SHAN Rongsheng. A Consistency Checking Method for Erasure-Coded Striped Data [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 579-584. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||