Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (2): 242-252.doi: 10.16183/j.cnki.jsjtu.2022.399
• Naval Architecture, Ocean and Civil Engineering • Previous Articles
BAO Zhujie1,2, LI Zhen3, WANG Feiliang1,2,4, PANG Bo1,2, YANG Jian1,2()
Received:
2022-10-12
Revised:
2022-12-07
Accepted:
2022-12-14
Online:
2024-02-28
Published:
2024-03-04
CLC Number:
BAO Zhujie, LI Zhen, WANG Feiliang, PANG Bo, YANG Jian. Prediction of Slip and Torsion Performance of Right-Angle Fasteners Based on Machine Learning Methods[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.399
[1] | 孙世梅, 梁友, 闫伟, 等. 2010-2016年建筑施工脚手架坍塌事故统计分析[J]. 吉林建筑大学学报, 2018, 35(4): 33-36. |
SUN Shimei, LIANG You, YAN Wei, et al. Statistical analysis of scaffolding collapse accidents in building construction 2010-2016[J]. Journal of Jilin Jianzhu University, 2018, 35(4): 33-36. | |
[2] |
HU X P, PENG G, NIU D T, et al. Experimental study on mechanical properties of steel tube-coupler connections in corroded scaffolds[J]. Journal of Constructional Steel Research, 2021, 176: 106383.
doi: 10.1016/j.jcsr.2020.106383 URL |
[3] | 蔡雪峰, 周继忠, 庄金平. 钢管扣件节点抗滑性能研究[J]. 土木工程学报, 2009, 42(3): 60-64. |
CAI Xuefeng, ZHOU Jizhong, ZHUANG Jinping. Joint slip resistance performance of fasteners in steel pipe formwork supports[J]. China Civil Engineering Journal, 2009, 42(3): 60-64. | |
[4] | 宋建学, 史瑞. 脚手架扣件抗滑移试验及分析[J]. 建筑技术, 2011, 42(10): 937-938. |
SONG Jianxue, SHI Rui. Anti-slip test and analysis of scaffold fasteners[J]. Construction Technology, 2011, 42(10): 937-938. | |
[5] |
JIA L, LIU H, CHEN Z, et al. Mechanical properties of right-angle couplers in steel tube-coupler scaffolds[J]. Journal of Constructional Steel Research, 2016, 125: 43-60.
doi: 10.1016/j.jcsr.2016.06.005 URL |
[6] | CHANG C L, SONG J X. Parameters survey and experiment on steel scaffold components[J]. Advanced Materials Research, 2012, 368: 1513-1516. |
[7] | 何夕平, 王璜, 赵雪会. 扣件不同紧固力矩对工字钢悬挑钢管外脚手架变形影响分析[J]. 西安建筑科技大学学报, 2018, 50(2): 196-201. |
HE Xiping, WANG Huang, ZHAO Xuehui. Analysis of the deformation influence on the external scaffold of I-steel cantilever steel pipe in different fastening torque[J]. Journal of Xi’an University of Architecture & Technology, 2018, 50(2): 196-201. | |
[8] | 陈志华, 陆征然, 王小盾. 钢管脚手架直角扣件刚度的数值模拟分析及试验研究[J]. 土木工程学报, 2010, 43(9): 100-108. |
CHEN Zhihua, LU Zhengran, WANG Xiaodun. Numerical analysis and experimental study of the stiffness of right-angle couplers in tubular steel scaffolds[J]. China Civil Engineering Journal, 2010, 43(9): 100-108. | |
[9] | 陆征然, 陈志华, 王小盾, 等. 扣件式钢管满堂支撑体系稳定性的有限元分析及试验研究[J]. 土木工程学报, 2012, 45(1): 49-60. |
LU Zhengran, CHEN Zhihua, WANG Xiaodun, et al. Experimental and theoretical study of the bearing capacity of fastener steel tube full-hall formwork support system[J]. China Civil Engineering Journal, 2012, 45(1): 49-60. | |
[10] | 贾莉, 刘红波, 陈志华, 等. 扣件式钢管满堂脚手架整体稳定试验与有限元分析[J]. 建筑结构学报, 2017, 38(6): 114-122. |
JIA Li, LIU Hongbo, CHEN Zhihua, et al. Experimental research and FEA on bearing capacity of full hall steel tube and coupler scaffold support system[J]. Journal of Building Structures, 2017, 38(6): 114-122. | |
[11] | 中国建筑科学院. 建筑施工扣件式钢管脚手架安全技术规范: JGJ 130—2011[S]. 北京: 中国建筑工业出版社, 2011. |
China Academy of Building Research. Technical code for safety of steel tubular scaffold with couplers in construction: JGJ 130—2011[S]. Beijing: China Construction Industry Press, 2011. | |
[12] | SU L Y, FU L P. Analysis on the stability of double-fastener type tubular scaffold[C]// International Conference on Advances in Civil Engineering. UK: IOP Publishing, 2019, 330: 022083. |
[13] | 中华人民共和国国家质量监督检验检疫总局. 钢管脚手架扣件: GB 15831—2006[S]. 北京: 中国建筑金属结构, 2006. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Steel tube scaffold couplers: GB 15831—2006[S]. Beijing: China Construction Metal Structure Association, 2006. | |
[14] | 中国建筑一局有限公司. 建筑施工临时支撑结构技术规范: JGJ 300—2013[S]. 北京: 中国建筑工业出版社, 2013. |
China Construction First Group Corporation Limited. Technical specifications for temporary support structures for building construction: JGJ 300—2013[S]. Beijing: China Construction Industry Press, 2013. | |
[15] | 全国铸造标准化技术委员会. 可锻铸铁件: GB/T 9440—2010[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2010. |
National Technical Committee for Standardization of Foundry. Forged iron castings: GB/T 9440—2010[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. | |
[16] | 全国钢标准化技术委员会. 低压流体输送用焊接钢管: GB/T 3091—2015[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2015. |
National Technical Committee for Standardization of Steel. Welded steel pipes for low-pressure fluid transportation: GB/T 3091—2015[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2015. | |
[17] | 张洪, 刘彬彬. 应用深度学习识别法兰螺栓连接状态[J]. 应用声学, 2021, 40(3): 350-357. |
ZHANG Hong, LIU Binbin. The recognition of flange bolt connection state based on deep learning[J]. Journal of Applied Acoustics, 2021, 40(3): 350-357. | |
[18] | ZHANG Z, DU F, ZHANG L, et al. Monitoring of piezoelectric impedance for bolt loosening using general regression neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 639-645. |
[19] |
NA W S. Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data[J]. Engineering Structures, 2021, 226: 111228.
doi: 10.1016/j.engstruct.2020.111228 URL |
[20] | SUN W C, GUAN Z Q, ZENG Y, et al. Bolt loosening detection of rocket connection structure based on variational modal decomposition and support vector machines[J]. Applied Sciences-Basel, 2022, 12(12): 6266. |
[21] |
WANG F R, CHEN Z, SONG G B. Monitoring of multi-bolt connection looseness using entropy-based active sensing and genetic algorithm-based least square support vector machine[J]. Mechanical Systems and Signal Processing, 2020, 136: 106507.
doi: 10.1016/j.ymssp.2019.106507 URL |
[22] |
ERALIEV O, LEE K H, LEE C H. Vibration-based loosening detection of a multi-bolt structure using machine learning algorithms[J]. Sensors, 2022, 22(3): 1210.
doi: 10.3390/s22031210 URL |
[23] |
KHAN N, SALEEM M R, LEE D, et al. Utilizing safety rule correlation for mobile scaffolds monitoring leveraging deep convolution neural networks[J]. Computers in Industry, 2021, 129: 103448.
doi: 10.1016/j.compind.2021.103448 URL |
[24] |
SAROTHI S Z, AHMED K S, KHAN N I, et al. Machine learning-based failure mode identification of double shear bolted connections in structural steel[J]. Engineering Failure Analysis, 2022, 139: 106471.
doi: 10.1016/j.engfailanal.2022.106471 URL |
[25] | SAKHAKARMI S, ARTEAGA C, CHO C, et al. Scaffold safety analysis: Focusing on deep learning[C]// Construction Research Congress 2020:Computer Applications. New York, USA: Amer Soc Civil Engineers, 2020: 218-225. |
[26] | 赵平, 吴昊, 贾建国. 插销式脚手架在异形结构中的安全性能研究[J]. 工业建筑, 2015, 45(2): 101-106. |
ZHAO Ping, WU Hao, JIA Jianguo. Study of safety performance of plug-in scaffold for special-shaped structure[J]. Industrial Construction, 2015, 45(2): 101-106. | |
[27] | CHO C, KIM K, PARK J, et al. Data-driven monitoring system for preventing the collapse of scaffolding structures[J]. Journal of Construction Engineering and Management, 2018, 144(8): 4018077-1-13. |
[28] | LUO S X, QIAO A M, TANG Q G. Fault diagnosis method for attached lifting scaffold based on support vector machine[J]. Journal of Engineering, 2020, 2020(13): 495-498. |
[29] |
PANG B, WANG F, YANG J, et al. Evaluation on the progressive collapse resistance of infilled reinforced concrete frames based on numerical and semi-analytical methods[J]. Engineering Structures, 2022, 267: 114684.
doi: 10.1016/j.engstruct.2022.114684 URL |
[30] |
AZIM I, YANG J, IQBAL M F, et al. Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm[J]. KSCE Journal of Civil Engineering, 2021, 25(3): 891-905.
doi: 10.1007/s12205-021-0431-0 |
[31] | 秦大同, 谢里阳. 现代机械设计手册[M]. 第2版. 北京: 化学工业出版社, 2011. |
QIN Datong, XIE Liyang. Modern mechanical design manual[M]. 2nd ed. Beijing: Chemical Industry Press, 2011. | |
[32] | FERREIRA C. Gene expression programming: A new adaptive algorithm for solving problems[J]. Complex Systems, 2001, 13(2): 87-129. |
[1] | SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi. An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165. |
[2] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[3] | SU Hongjia, LUO Yucheng, LIU Fei. Review of Equipment Effectiveness Evaluation and Supporting Technologies [J]. Air & Space Defense, 2023, 6(3): 29-38. |
[4] | Huang Jun, LI Shaojie, KANG Zhuang. Analysis of J-Lay Laying of Large Diameter Submarine Pipeline [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 145-151. |
[5] | SUN Jie, LI Zihao, ZHANG Shuyu. Application of Machine Learning in Chemical Synthesis and Characterization [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244. |
[6] | GAN Ezhong, LIU Yan, WANG Hairong, WANG Chengguang. Research on Comprehensive Tradeoff of Supportability Based on Machine Learning Performance Measurement Theory [J]. Air & Space Defense, 2023, 6(1): 38-44. |
[7] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[8] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[9] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian. Application of Machine Learning in Fuze- Warhead System Design [J]. Air & Space Defense, 2022, 5(2): 27-31. |
[10] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
[11] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[12] | ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming. Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 22-30. |
[13] | HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
[14] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei. An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems [J]. Air & Space Defense, 2021, 4(2): 1-. |
[15] | BAO Qinglin, CHAI Huaqi, ZHAO Songzheng, WANG Jilin. Model of Technology Opportunity Mining Using Machine Learning Algorithm and Its Application [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 705-717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||