Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (5): 604-610.doi: 10.16183/j.cnki.jsjtu.2021.231
• Mechanical Engineering • Previous Articles Next Articles
WANG Ziyao, GUO Fengxiang, CHEN Li()
Received:
2021-06-29
Online:
2022-05-28
Published:
2022-06-07
Contact:
CHEN Li
E-mail:li.h.chen@sjtu.edu.cn
CLC Number:
WANG Ziyao, GUO Fengxiang, CHEN Li. Engine Emission Prediction Based on Extrapolated Gaussian Process Regression Method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 604-610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.231
[1] | 张文. 基于运行工况的发动机基本标定研究[D]. 上海: 上海交通大学, 2019. |
ZHANG Wen. Research on basic calibration of engine based on operating conditions[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[2] |
TURKSON R F, YAN F W, ALI M K A, et al. Artificial neural network applications in the calibration of spark-ignition engines: An overview[J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1346-1359.
doi: 10.1016/j.jestch.2016.03.003 URL |
[3] |
YU Q, YANG Y, XIONG X, et al. Assessing the impact of multi-dimensional driving behaviors on link-level emissions based on a portable emission measurement system (PEMS)[J]. Atmospheric Pollution Research, 2021, 12(1): 414-424.
doi: 10.1016/j.apr.2020.09.022 URL |
[4] | 陈婷, 倪红, 谷雪景, 等. 中国移动源下阶段排放法规综述和分析[J]. 内燃机工程, 2018, 39(6): 24-30. |
CHEN Ting, NI Hong, GU Xuejing, et al. An update on China’s mobile source emission regulations[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(6): 24-30. | |
[5] |
RAKOPOULOS C D, RAKOPOULOS D C, GIAKOUMIS E G, et al. Validation and sensitivity analysis of a two zone Diesel engine model for combustion and emissions prediction[J]. Energy Conversion and Management, 2004, 45(9/10): 1471-1495.
doi: 10.1016/j.enconman.2003.09.012 URL |
[6] | FINESSO R, SPESSA E. Real-time predictive modeling of combustion and NOx formation in diesel engines under transient conditions[DB/OL]. (2012-04-16)[2021-06-05]. https://www.sae.org/publications/technical-papers/content/2012-01-0899/. |
[7] |
LEFEBVRE A H. Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions[J]. Journal of Aircraft, 1984, 21(11): 887-898.
doi: 10.2514/3.45059 URL |
[8] | HANZEVACK E L, LONG T W, ATKINSON C M, et al. Virtual sensors for spark ignition engines using neural networks[C]// Proceedings of the 1997 American Control Conference. Albuquerque, NM, USA: IEEE, 1997: 669-673. |
[9] |
SHI C, JI C W, WANG H Y, et al. Comparative evaluation of intelligent regression algorithms for performance and emissions prediction of a hydrogen-enriched Wankel engine[J]. Fuel, 2021, 290: 120005.
doi: 10.1016/j.fuel.2020.120005 URL |
[10] |
NIU X X, YANG C L, WANG H C, et al. Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine[J]. Applied Thermal Engineering, 2017, 111: 1353-1364.
doi: 10.1016/j.applthermaleng.2016.10.042 URL |
[11] |
NALEPA J, KAWULOK M. Selecting training sets for support vector machines: A review[J]. Artificial Intelligence Review, 2019, 52(2): 857-900.
doi: 10.1007/s10462-017-9611-1 URL |
[12] | 戴金池, 庞海龙, 俞妍, 等. 基于LSTM神经网络的柴油机NOx排放预测[J]. 内燃机学报, 2020, 38(5): 457-463. |
DAI Jinchi, PANG Hailong, YU Yan, et al. Prediction of diesel engine NOx emissions based on long-short term memory neural network[J]. Transactions of CSICE, 2020, 38(5): 457-463. | |
[13] | 秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J/OL]. 吉林大学学报(工学版). ( 2021-04-01)[2021-06-05]. https://doi.org/10.13229/j.cnki.jdxbgxb20210111. |
QIN Jing, ZHENG De, PEI Yiqiang, et al. Prediction method of engine performance and emission based on PSO-GPR[J/OL]. Journal of Jilin University (Engineering and Technology Edition). (2021-04-01)[2021-06-05]. https://doi.org/10.13229/j.cnki.jdxbgxb20210111. | |
[14] | PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48(2): 88-91. |
[15] | 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第5版. 北京: 高等教育出版社, 2019. |
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
[16] | RASMUSSEN C E, WILLIAMS C. Gaussian processes for machine learning[M]. Cambridge, MA, USA: The MIT Press, 2005. |
[17] |
KLENSKE E D, ZEILINGER M N, SCHÖLKOPF B, et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 110-121.
doi: 10.1109/TCST.2015.2420629 URL |
[18] | WILSON A G, ADAMS R P. Gaussian process kernels for pattern discovery and extrapolation[C]// International conference on machine learning. Atlanta, USA: PMLR, 2013: 1067-1075. |
[19] |
MOHAMAD M A, SAPSIS T P. Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems[J]. PNAS, 2018, 115(44): 11138-11143.
doi: 10.1073/pnas.1813263115 URL |
[20] | 中华人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB 18352.6—2016 北京: 中国环境科学出版社. 2020. |
Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6): GB 18352.6—2016[S]. Beijing: China Environment Science Press, 2020. | |
[21] |
STEINIER J, TERMONIA Y, DELTOUR J. Smoothing and differentiation of data by simplified least square procedure[J]. Analytical Chemistry, 1972, 44(11): 1906-1909.
doi: 10.1021/ac60319a045 URL |
[22] | SHLENS J. A tutorial on principal component analysis[EB/OL]. (2014-04-07) [2021-06-05]. https://arxiv.org/abs/1404.1100. |
[1] | CHEN Yun, SHEN Hao, WANG Jiayu, ZHAO Wenkai, PAN Zhijun, WANG Xiaohui, XIAO Yinjing. Real-Time Calculation of Carbon Emissions in County-Level Administrative Regions Based on ‘Energy Brain’ [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1111-1117. |
[2] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[3] | LI Xingzhi, HAN Bei, LI Guojie, WANG Keyou, XU Jin. Challenges of Distributed Green Energy Carbon Trading Mechanism and Carbon Data Management [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. |
[4] | WANG Kai∗ (汪 凯), WANG Xianliang (王宪良), ZHU Jiazan (朱加赞), OU Daisong (欧代松), PAN Daifeng (潘代锋). System Life and Reliability Modeling of a Multiple Power Takeoffs Accessory Gearbox Transmission [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 855-866. |
[5] | DUAN Hongyan, TANG Guoxin, SHENG Jie, CAO Mengjie, PEI Lei, TIAN Hongwei. A Novel Prediction Model for Fatigue Strength [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 801-808. |
[6] | JIANG Junhao, CHEN Gang. Dynamic Model Predictive Control Method for Steering Control of Driving Robot [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 594-603. |
[7] | LU Guannan1 (卢冠男), WANG Mengling1∗ (王梦灵), FOX Tamara2, JIANG Peng3 (蒋 鹏), JIANG Fusong3 (蒋伏松). Novel Indicators for Adverse Glycemic Events Detection Analysis Based on Continuous Glucose Monitoring Neural Network Predictive Models [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 498-504. |
[8] | LI Zeyao, ZHOU Jie, TIAN Wanjun, PEI Wansheng. Accumulative Plastic Deformation of Saturated Soft Clay Under Variable Frequency Cyclic Loading for Subway [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 454-463. |
[9] | XU Yong, CAI Yunze, SONG Lin. Review of Research on Condition Assessment of Nuclear Power Plant Equipment Based on Data-Driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278. |
[10] | ZENG Bo, MU Hongwei, DONG Houqi, ZENG Ming. Optimization of Active Distribution Network Operation Considering Decarbonization Endowment from 5G Base Stations [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 279-292. |
[11] | ZHANG Pengfei, XU Jingyi, GUO Wei, WU Wei, ZHONG Chen, WEI Wendong. Low-Carbon Transformation of the Power System in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 293-302. |
[12] | DENG Chen, KONG Yinan, WANG Qing, CHEN Gong. Research on Empirical Engineering Correction Algorithm Integrating Physical Laws [J]. Air & Space Defense, 2022, 5(3): 73-79. |
[13] | XU Tianyi (徐天意), XIA Ming (夏明), JIANG Hong (姜虹). Advances in Medicine-Engineering Crossover in Automated Anesthesia [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 137-143. |
[14] | WU Xiaojun (吴萧俊), DU Jiang (杜江), JIANG Haifeng (江海峰), ZHAO Min (赵敏). Application of Digital Medicine in Addiction [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 144-152. |
[15] | YUAN Xiaoqi (袁筱祺), ZHU Lelan (朱乐兰), XU Qiongfan(徐琼凡), GAO Wei (高玮). Risk Prediction Model of Gallbladder Disease in Shanghai Middle-Aged and Elderly People Based on Neural Networks [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||