Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (2): 188-200.doi: 10.16183/j.cnki.jsjtu.2022.331
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
GAO Nan, HU Ankang, HOU Lixun(), CHANG Xin
Received:
2022-08-26
Revised:
2022-11-01
Accepted:
2022-11-17
Online:
2024-02-28
Published:
2024-03-04
CLC Number:
GAO Nan, HU Ankang, HOU Lixun, CHANG Xin. An Rapid Prediction Method for Propeller Hydrodynamic Performance Based on Deep Learning[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 188-200.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.331
Tab.2
Propellers and their main parameters in the data set
型号 | Z | D/m | Dr | P/D(0.7R) | S/(°) | ra/(°) |
---|---|---|---|---|---|---|
HSP | 5 | 0.220 | 0.700 | 0.944 | 45.00 | -3.03 |
P4119 | 3 | 0.305 | 0.600 | 1.084 | 0.00 | 0.00 |
MAU5-65 | 5 | 0.250 | 0.650 | 1.000 | 50.00 | 10.00 |
KP458 | 4 | 0.204 | 0.431 | 0.721 | 13.15 | 0.00 |
DTRC 4118 | 3 | 0.305 | 0.600 | 1.077 | 0.00 | 0.00 |
E779A | 4 | 0.240 | 0.550 | 1.100 | 0.00 | 4.05 |
P4381 | 5 | 0.305 | 0.725 | 1.210 | 0.00 | 0.00 |
KP068 | 5 | 0.250 | 0.725 | 1.210 | 0.00 | 0.00 |
KP069 | 5 | 0.250 | 0.725 | 1.191 | 31.58 | 0.00 |
KP070 | 5 | 0.250 | 0.725 | 1.184 | 63.10 | 0.00 |
B4-55 | 4 | 0.240 | 0.550 | 1.000 | 0.00 | 0.00 |
B4-40 | 4 | 0.300 | 0.400 | 1.300 | 0.00 | 15.00 |
P4382 | 5 | 0.305 | 0.725 | 1.200 | 36.00 | 5.38 |
DTRC 4497 | 5 | 0.240 | 0.700 | 1.200 | 36.00 | 0.00 |
DTRC 4383 | 5 | 0.305 | 0.725 | 1.098 | 72.00 | 10.15 |
VP1304 | 5 | 0.250 | 0.779 | 1.635 | 18.84 | -7.50 |
DTRC4384 | 5 | 0.305 | 0.725 | 1.199 | 108.00 | 14.46 |
DTRC4679 | 3 | 0.607 | 0.755 | 1.572 | 51.00 | 0.00 |
[1] |
CHOI S P, LEE J U, PARK J B. Application of deep reinforcement learning to predict shaft deformation considering hull deformation of medium-sized oil/chemical tanker[J]. Journal of Marine Science and Engineering, 2021, 9(7): 1-29.
doi: 10.3390/jmse9010001 URL |
[2] |
BAKHTIARI M, GHASSEMI H. CFD data based neural network functions for predicting hydrodynamic performance of a low-pitch marine cycloidal propeller[J]. Applied Ocean Research, 2020, 94: 101981.
doi: 10.1016/j.apor.2019.101981 URL |
[3] | SHORA M M, GHASSEMI H, NOWRUZI H. Using computational fluid dynamic and artificial neural networks to predict the performance and cavitation volume of a propeller under different geometrical and physical characteristics[J]. Journal of Marine Engineering & Technology Proceedings of the Institute of Marine Engineering Science & Technology, 2018, 17(2): 59-84. |
[4] | 王超, 韩康, 孙聪, 等. 船用螺旋桨优化设计与参数分析[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 97-102. |
WANG Chao, HAN Kang, SUN Cong, et al. Marine propeller optimization design and parameter analysis[J]. Journal of Huazhong University of Technology (Natural Science Edition), 2020, 48(4): 97-102. | |
[5] |
XUE Y, YANG C J, DONG X Q, et al. Design of marine propellers with prescribed and optimal spanwise circulation distributions based on genetic algorithms and neural network[J]. Applied Ocean Research, 2022, 127: 103318.
doi: 10.1016/j.apor.2022.103318 URL |
[6] | THOMAS M, LIONEL F, LAURENT D P, et al. Propeller noise detection with deep learning[C]// International Conference on Acoustics Speech and Signal Processing ICASSP. Barcelona, Spain:IEEE, 2020: 306-310. |
[7] |
WANG Y J, WANG K Q, MOUSTAFA A M. NoiseNet: A neural network to predict marine propellers’ underwater radiated noise[J]. Ocean Engineering, 2021, 236: 109542.
doi: 10.1016/j.oceaneng.2021.109542 URL |
[8] |
MIGLIANTI L, CIPOLLINI F, ONETO L, et al. Predicting the cavitating marine propeller noise at design stage: A deep learning based approach[J]. Ocean Engineering, 2020, 209: 107481.
doi: 10.1016/j.oceaneng.2020.107481 URL |
[9] | 王宪磊. 基于CFD的大侧斜螺旋桨性能研究[D]. 大连: 大连海事大学, 2020. |
WANG Xianlei. Research on the performance of high skew propeller based on CFD[D]. Dalian: Dalian Maritime University, 2020. | |
[10] |
LONG Y, HAN C Z, JI B, et al. Verification and validation of large eddy simulations of turbulent cavitating flow around two marine propellers with emphasis on the skew angle effects[J]. Applied Ocean Research, 2020, 101: 102167.
doi: 10.1016/j.apor.2020.102167 URL |
[11] | 王文全, 马开放, 王诗洋, 等. 螺旋桨适伴流理论设计及参数优化设计[J]. 应用科技, 2019, 46(5): 1-9. |
WANG Wenquan, MA Kaifang, WANG Shiyang, et al. Wake-adapted theory design and parameter optimization design of propeller[J]. Applied Science and Technology, 2019, 46(5): 1-9. | |
[12] | 朱显玲, 齐江辉, 陈艳霞. 斜流中七叶侧斜螺旋桨水动力及空泡性能研究[J]. 推进技术, 2022, 43(8): 425-433. |
ZHU Xianling, QI Jianghui, CHEN Yanxia. Hydrodynamic performance and cavitation characteristics of seven blade propeller with skew in oblique flow[J]. Journal of Propulsion Technology, 2022, 43(8): 425-433. | |
[13] | 杨晓. 水动力模型驱动下的智能船舶仿真平台研究[D]. 大连: 大连海事大学, 2020. |
YANG Xiao. Research on simulation platform of intelligent ship driven by hydrodynamic model[D]. Dalian: Dalian Maritime University, 2020. | |
[14] | YANG X, YIN Y, LIAN J J. Numerical study on the hydrodynamic performance of the semi-spade rudder and propeller[J]. Advances in Mechanical Engineering, 2019, 11(1): 1-18. |
[15] | 汤世昕, 沈育静, 陈纪康, 等. 改进螺旋桨敞水性能预报的泰勒展开边界元法[J]. 哈尔滨工程大学学报, 2022, 43(7): 928-935. |
TANG Shixin, SHEN Yujing, CHEN Jikang, et al. Taylor expansion boundary element method for propeller steady hydrodynamic performance prediction[J]. Journal of Harbin Engineering University, 2022, 43(7): 928-935. | |
[16] | BISHOUP B A, BROCKETT T, DONG S T. Report of the propulsor committee. 18th ITTC[C]// International Towing Tank Conference. Kobe, Japan: Japan Shipbuilding Association, 1987: 104-105. |
[17] | 黄永生. 高速水下航行体对转螺旋桨设计方法研究[D]. 上海: 上海交通大学, 2020. |
HUANG Yongsheng. Study on design methods for contra-rotating propellers of high speed underwater vehicles[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
[18] | DJAHIDA B, OMAR I. Numerical simulation of the cavitating flow around marine co-rotating tandem propellers[J]. Brodogradnja, 2019, 70(1): 43-57. |
[19] | 赵旻晟, 赵伟文, 万德成. E779A螺旋桨斜流工况下的空泡数值模拟[J]. 中国造船, 2021, 62(3): 94-102. |
ZHAO Minsheng, ZHAO Weiwen, WAN Decheng. Numerical simulation of cavitation under oblique flow condition of E779A propeller[J]. Shipbuilding of China, 2021, 62(3): 94-102. | |
[20] |
EBRAHIMI A, SEIF M S, NOURI BORUJERDI A. Hydro-acoustic and hydrodynamic optimization of a marine propeller using genetic algorithm, boundary element method, and FW-H equations[J]. Journal of Marine Science and Engineering. 2019, 7(9): 321-1-18.
doi: 10.3390/jmse7090321 URL |
[21] | 张利军. 螺旋桨性能预报的速度势面元法研究[D]. 大连: 大连理工大学, 2006. |
ZHANG Lijun. Investigation of a potential based surface panel method for prediction of propeller performances[D]. Dalian: Dalian University of Technology, 2006. | |
[22] |
PAN Y C, ZHANG H X, ZHOU Q D. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 899-913.
doi: 10.1016/j.ijnaoe.2019.04.002 URL |
[23] |
ZHANG X T, HONG Y, LIU W B, et al. Improving the propulsion performance of composite propellers under off-design conditions[J]. Applied Ocean Research, 2020, 100: 102164
doi: 10.1016/j.apor.2020.102164 URL |
[24] |
TONG X D, CHEN H Y, CHEN Y, et al. Influence of skew angle on the random vibration response of propeller-shafting system induced by turbulent inflow[J]. Ocean Engineering, 2022, 244: 110350.
doi: 10.1016/j.oceaneng.2021.110350 URL |
[25] | 王琪, 杨晨俊. 基于涡格法的任意环量分布螺旋桨数值设计方法[J]. 中国造船, 2018, 59(2): 90-102. |
WANG Qi, YANG Chenjun. Numerical design method of arbitrary circulation distribution of propeller based on vortex lattice method[J]. Shipbuilding of China, 2018, 59(2): 90-102. | |
[26] | 陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42(Sup.1): 157-162. |
CHEN Zhiming, YUAN Jianping, YAN Jin, et al. Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42(Sup.1): 157-162. | |
[27] | 胡俊明, 李铁骊, 林焰, 等. 基于RANS法的B系列对转螺旋桨敞水性能数值模拟[J]. 大连理工大学学报, 2017, 57(2): 148-156. |
HU Junming, LI Tieli, LIN Yan, et al. Numerical simulation of open water performance of B series contra-rotating propellers based on RANS method[J]. Journal of Dalian University of Technology, 2017, 57(2): 148-156. | |
[28] | 胡健, 李聪慧, 张维鹏, 等. 基于CFD的桨舵水动力干扰研究[J]. 应用科技, 2017, 44(3): 5-11. |
HU Jian, LI Conghui, ZHANG Weipeng, et al. Investigation of hydrodynamic interaction between propeller and rudder based on computation fluid dynamics[J]. Applied Science and Technology, 2017, 44(3): 5-11. | |
[29] | 王超. 螺旋桨水动力性能、空泡及噪声性能的数值预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. |
WANG Chao. The research on performance of propeller’s hydrodynamics, cavitation and noise[D]. Harbin: Harbin Engineering University, 2010. | |
[30] | 胡洋, 胡健, 刘亚彬. 斜流中螺旋桨的水动力性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(2): 262-268. |
HU Yang, HU Jian, LIU Yabin. Research on hydrodynamic performance of propeller in oblique flow[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(2): 262-268. | |
[31] | ZHOU X M, PAN H C, TIAN X Q, et al. Comparative analysis of hydrodynamic performance of propeller under different turbulence models[C]// 3rd International Conference on Fluid Mechanics and Industrial Applications. Taiyuan, China: IOP Publishing Ltd., 2019: 1300-1-11. |
[32] | 宁鹏. 基于速度势面元法的三维水翼与螺旋桨水动力性能预报[D]. 杭州: 浙江大学, 2017. |
NING Peng. Prediction of hydrodynamic performance on three-dimensional hydrofoil and propeller using potential panel method[D]. Hangzhou: Zhejiang University, 2017. | |
[33] | 王有江. 螺旋桨水动力性能及流场分析的面元-涡粒子耦合算法研究[D]. 西安: 西北工业大学, 2017. |
WANG Youjiang. Study on the boundary element-vortex particle couple method for the simulation of marine propeller flow[D]. Xi’an: Northwestern Polytechnical University, 2017. | |
[34] | 王超, 黄胜, 常欣, 等. 基于滑移网格与RNG k-ε湍流模型的桨舵干扰性能研究[J]. 船舶力学, 2011, 15(7): 715-721. |
WANG Chao, HUANG Sheng, CHANG Xin, et al. Research on the hydrodynamics performance of propeller-rudder interaction based on sliding mesh and RNG k-ε model[J]. Journal of Ship Mechanics, 2011, 15(7): 715-721. | |
[35] | SONG S, DEMIREL Y K, ATLAR M. Propeller performance penalty of biofouling: CFD prediction[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(6): 1-22. |
[36] |
NADERY A, GHASSEMI H, CHYBOWSKI L. The effect of the PSS configuration on the hydrodynamic performance of the KP505 propeller behind the KCS[J]. Ocean Engineering, 2021, 234: 109310.
doi: 10.1016/j.oceaneng.2021.109310 URL |
[1] | ZHANG Geng, YAO Jianxi. Numerical Analysis of Hydrodynamic Performance of Propeller in Waves [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 175-187. |
[2] | GUO Haipeng, ZOU Zaojian, LI Guangnian. Numerical Simulation of Crashback Condition of a Propeller Based on OpenFOAM [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 168-176. |
[3] | ZHANG Qin, WANG Xinyu, WANG Zhicheng, WANG Tianyuan. Wake Field Characteristics of Non-Ducted and Ducted Propellers in Large-Angle Oblique Flow [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1432-1441. |
[4] | WU Chunxiao, LU Yu, LIU Shewen, GU Zhuhao, SHAO Siyu, SHAO Wu, LI Chuang. Optimization Design of New Bionic Propeller [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1421-1431. |
[5] | DING Enbao, CHANG Shengming, SUN Cong, ZHAO Leiming, WU Hao. Hydrodynamic Characteristics of a Surface Piercing Propeller Entering Water with Different Radiuses [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1188-1198. |
[6] | QIN Guangfei, YAO Huilan, ZHANG Huaixin. Numerical Study of Stern Vibration of a Self-Propulsion Ship in Propeller Induced Pressure Fluctuation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1148-1158. |
[7] | LI Peng, WANG Chao, SUN Huawei, GUO Chunyu. Numerical Simulation Strategy Optimization Analysis of Submarine Resistance and Flow Field [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 506-515. |
[8] | PEREIRA Eric Joseph1 (佩雷拉·埃里克·约瑟夫), TEH Hee-Min1,2∗ (郑希铭), MA Zhe3 (马 哲). Hydrodynamic Performance of Air-Filled Wave Attenuator for Wave Control: Experimental Study [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 316-325. |
[9] | WANG Chao, LIU Zheng, LI Xing, WANG Chunhui, XU Pei. Influence of Free-State Ice Size and Initial Position on Coupled Hydrodynamic Performance of Ice Propeller [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 990-1000. |
[10] | LIU Heng, WU Rui, SUN Shuo. Numerical Simulation of Propeller Cavitation in Non-Uniform Flow [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 976-983. |
[11] | WANG Chao, YANG Bo, WANG Chunhui, GUO Chunyu, XU Pei. Ice Floe Trajectory Under the Action of Propeller Pumping [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 505-512. |
[12] | WU Lihong, FENG Xisheng, YE Zuolin, LI Yiping. Physics-Based Simulation of AUV Forced Diving by Self-Propulsion [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 290-296. |
[13] | ZHANG Yu, WANG Xiaoliang. Simulation on Aeroelasticity of Flexible Propellers Based onRadial Point Interpolation Method [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 924-934. |
[14] | XU Ye, XIONG Ying, HUANG Zheng. Test and Numerical Study of Propeller Cavitation Induced Fluctuating Pressure of Twin-Propeller Ship [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 831-838. |
[15] | HUANG Fu-xiang, WU Chang-nan, LI Xiang, LI Xin-fei, LI Li-hui, YIN Bing-gang. Research on Inter-propeller Interference of Dynamic Positioning Vessel [J]. Ocean Engineering Equipment and Technology, 2019, 6(2): 536-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||