Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (11): 1512-1521.doi: 10.16183/j.cnki.jsjtu.2022.008
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
GUO Junfeng, WANG Miaosheng(), WANG Zhiming
Received:
2022-01-20
Revised:
2022-03-02
Accepted:
2022-03-14
Online:
2023-11-28
Published:
2023-12-01
CLC Number:
GUO Junfeng, WANG Miaosheng, WANG Zhiming. Fault Diagnosis of Rolling Bearing with Roller Spalling Based on Two-Step Transfer Learning on Unbalanced Dataset[J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1512-1521.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.008
Tab.1
Information of source domain and target domain dataset
序号 | 故障类型 | 源域 0 HP | 目标域 | ||
---|---|---|---|---|---|
0 HP | 1 HP | 2 HP | |||
1 | Normal | 400 | 400 | 400 | 400 |
2 | I(1) | 400 | 400 | 400 | 400 |
3 | I(2) | 400 | 400 | 400 | 400 |
4 | I(3) | 400 | 400 | 400 | 400 |
5 | B(1) | 400 | 400 | 400 | 400 |
6 | B(2) | 400 | 400 | 400 | 400 |
7 | B(3) | 400 | 400 | 400 | 400 |
8 | O(1) | 400 | 400 | 400 | 400 |
9 | O(2) | 400 | 400 | 400 | 400 |
10 | O(3) | 400 | 400 | 400 | 400 |
[1] | 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626. |
ZHANG Genbao, LI Hao, RAN Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1617-1626. | |
[2] | 周生通, 朱经纬, 周新建, 等. 组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性[J]. 交通运输工程学报, 2020, 20(1): 159-170. |
ZHOU Shengtong, ZHU Jingwei, ZHOU Xinjian, et al. Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 159-170. | |
[3] | 韩毅. 地铁车辆滚动轴承振动信号的时域分析[J]. 城市轨道交通研究, 2021, 24 (Sup.1): 57-62. |
HAN Yi. Time domain analysis of vibration signal for metro vehicle rolling bearing[J]. Urban Mass Transit, 2021, 24 (Sup.1): 57-62. | |
[4] | 李舜酩, 侯钰哲, 李香莲. 滚动轴承振动故障时频域分析方法综述[J]. 重庆理工大学学报(自然科学), 2021, 35(10): 85-93. |
LI Shunming, HOU Yuzhe, LI Xianglian. Review on time-frequency-domain analysis methods for vibration faults of rolling bearings[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(10): 85-93. | |
[5] | 张士强. 基于深度学习的故障诊断技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
ZHANG Shiqiang. Research on fault diagnosis technology based on deep learning[D]. Harbin:Harbin Institute of Technology, 2018. | |
[6] |
ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
doi: 10.1016/j.ymssp.2018.05.050 |
[7] |
TAMILSELVAN P, WANG P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115: 124-135.
doi: 10.1016/j.ress.2013.02.022 URL |
[8] |
HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50.
doi: 10.1016/j.cogsys.2018.03.002 URL |
[9] |
ZHAO X L, JIA M P, LIU Z. Fault diagnosis framework of rolling bearing using adaptive sparse contrative auto-encoder with optimized unsupervised extreme learning machine[J]. IEEE Access, 2019, 8: 99154-99170.
doi: 10.1109/Access.6287639 URL |
[10] |
ZHANG X, HUANG T, WU B, et al. Multi-model ensemble deep learning method for intelligent fault diagnosis with high-dimensional samples[J]. Frontiers of Mechanical Engineering, 2021, 16(2): 340-352.
doi: 10.1007/s11465-021-0629-3 |
[11] |
SHAO S Y, WANG P, YAN R Q. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry, 2019, 106: 85-93.
doi: 10.1016/j.compind.2019.01.001 URL |
[12] |
WANG J, HE Q B. Wavelet packet envelope manifold for fault diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(11): 2515-2526.
doi: 10.1109/TIM.2016.2566838 URL |
[13] |
SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62.
doi: 10.1109/TIM.2014.2330494 URL |
[14] |
CHEN J L, LI Z P, PAN J, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 1-35.
doi: 10.1016/j.ymssp.2015.08.023 URL |
[15] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
doi: 10.1145/3422622 URL |
[16] |
ZHENG M, LI T, ZHU R, et al. Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification[J]. Information Sciences, 2020, 512: 1009-1023.
doi: 10.1016/j.ins.2019.10.014 URL |
[17] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein gan[EB/OL]. (2017-12-06)[2022-01-20]. https://arxiv.org/abs/1701.07875 |
[18] |
ADDAGARLA S K. Real time multi-scale facial mask detection and classification using deep transfer learning techniques[J]. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9(4): 4402-4408.
doi: 10.30534/ijatcse/2020/33942020 URL |
[19] |
PENG C, LI L L, CHEN Q, et al. A fault diagnosis method for rolling bearings based on parameter transfer learning under imbalance data sets[J]. Energies, 2021, 14(4): 944.
doi: 10.3390/en14040944 URL |
[20] | TAN B, ZHANG Y, PAN S J, et al. Distant domain transfer learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA: ACM, 2017: 2604-2610. |
[1] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[2] | ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015. |
[3] | LIU Jiahe, HU Pengwei, CHENG Hailong. Research on Condition-Based Maintenance of Complex System Based on Performance Degradation [J]. Air & Space Defense, 2023, 6(1): 56-62. |
[4] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[5] | XU Yong, CAI Yunze, SONG Lin. Review of Research on Condition Assessment of Nuclear Power Plant Equipment Based on Data-Driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278. |
[6] | LIU Xiuli, XU Xiaoli. A Fault Diagnosis Method Based on Feature Pyramid CRNN Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. |
[7] | LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. |
[8] | NIE Rui, WANG Hongru. Fault Diagnosis of UAV Formation Actuator Based on Neural Network Observer [J]. Air & Space Defense, 2022, 5(2): 32-41. |
[9] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[10] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[11] | SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80. |
[12] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[13] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[14] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[15] | WANG Yuexing, WU Yongguo, XU Chuangang. Infrared Ship Target Detection Algorithm Based on Deep Transfer Learning [J]. Air & Space Defense, 2021, 4(4): 61-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||