Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (8): 1089-1100.doi: 10.16183/j.cnki.jsjtu.2021.014
• Aeronautics and Astronautics • Previous Articles Next Articles
WANG Xiaoliang1(), YAO Xiaosong2, GAO Shuang2, LIU Guohua2
Received:
2021-01-09
Online:
2022-08-28
Published:
2022-08-26
CLC Number:
WANG Xiaoliang, YAO Xiaosong, GAO Shuang, LIU Guohua. Aerodynamic Drag Characteristics of Ultra-Low Orbit Satellites[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1089-1100.
Tab.1
Comparison of spherical drag coefficient theory and DSMC calculation results
s | 理论阻 力系数 | 大气密度×1011/ (kg·m-3) | 温度T/K | 截面积/m2 | 来流速度/ (m·s-1) | DSMC 阻力/N | DSMC 阻力系数 | 误差/% |
---|---|---|---|---|---|---|---|---|
5 | 2.3155 | 3.11 | 976 | 0.0314159 | 3742.732 | 0.00001510 | 2.2077845 | -4.65 |
6 | 2.2521 | 3.11 | 976 | 0.0314159 | 4491.278 | 0.00002126 | 2.1586418 | -4.15 |
7 | 2.2094 | 3.11 | 976 | 0.0314159 | 5239.824 | 0.00002857 | 2.1312483 | -3.54 |
8 | 2.1788 | 3.11 | 976 | 0.0314159 | 5988.371 | 0.00003692 | 2.1086354 | -3.22 |
9 | 2.1559 | 3.11 | 976 | 0.0314159 | 6736.917 | 0.00004644 | 2.0956899 | -2.79 |
10 | 2.1381 | 3.11 | 976 | 0.0314159 | 7485.463 | 0.00005711 | 2.0875266 | -2.37 |
Tab.2
Comparison of plate drag coefficient theory and DSMC calculation results
s | 理论阻力系数 | 温度T/K | 截面积/m2 | 来流速度/(m·s-1) | DSMC阻力/N | DSMC阻力系数 | 误差/% |
---|---|---|---|---|---|---|---|
7 | 2.2736 | 976 | 0.04 | 5239.367901 | 0.00003693 | 2.1640565 | -4.81806 |
8 | 2.2372 | 976 | 0.04 | 5987.849029 | 0.00004777 | 2.1431898 | -4.20214 |
10 | 2.1872 | 976 | 0.04 | 7484.811287 | 0.00007353 | 2.1112999 | -3.47019 |
Tab.4
Comparison of calculation results and experimental results of 70° blunt cone
迎角/(°) | 实验轴向力系数 | 实验法向力系数 | DSMC计算的 轴向力系数 | DSMC计算的 法向力系数 | 轴向力系数 误差/% | 法向力系数 误差/% |
---|---|---|---|---|---|---|
0 | 1.657000000 | 0 | 1.728949582 | -0.000761428 | 4.34216 | — |
5 | 1.627769041 | 0.085193605 | 1.713213399 | 0.080889053 | 5.16964 | -5.05270 |
10 | 1.613559729 | 0.149462371 | 1.687071032 | 0.153224730 | 4.46260 | 2.51726 |
15 | 1.567301431 | 0.212901910 | 1.639862485 | 0.227159406 | 4.51641 | 6.69674 |
20 | 1.530410268 | 0.292043509 | 1.576663946 | 0.302286986 | 2.51391 | 3.50752 |
30 | 1.402148382 | 0.435407757 | 1.421332598 | 0.457364525 | -0.74490 | 5.04281 |
Tab.7
Atmosphere parameters at different altitudes
参数 | 轨道高度/km | |||
---|---|---|---|---|
150 | 200 | 250 | 300 | |
速度/(m·s-1) | 7817.23 | 7788.43 | 7758.97 | 7729.83 |
分子个数 | 5.19×1016 | 7.18×1015 | 1.91×1015 | 6.51×1014 |
温度/K | 634.39 | 854.56 | 941.33 | 976.01 |
N2分子个数占比 | 0.603 | 0.407 | 0.255 | 0.147 |
N2分子直径/m | 3.64×10-10 | 3.64×10-10 | 3.64×10-10 | 3.64×10-10 |
N2分子质量/kg | 4.65116×10-26 | 4.65116×10-26 | 4.65116×10-26 | 4.65116×10-26 |
O原子个数占比 | 0.397 | 0.593 | 0.745 | 0.853 |
O原子直径/m | 1.73×10-10 | 1.73×10-10 | 1.73×10-10 | 1.73×10-10 |
O原子质量/kg | 2.65781×10-26 | 2.65781×10-26 | 2.65781×10-26 | 2.65781×10-26 |
Tab.9
Drag and drag coefficients of satellites of different shapes
外形 | 体积/m3 | 侧面积/m2 | 截面积/m2 | 压差阻力/N | 剪切阻力/N | 总阻力/N | 体积阻力 系数 | 横截面阻力 系数 |
---|---|---|---|---|---|---|---|---|
圆柱 | 3.926991 | 15.70796 | 0.785398 | 1.25×10-2 | 6.98×10-3 | 1.95×10-2 | 1.01927693 | 3.2303 |
八面 | 3.535534 | 15.30734 | 0.707107 | 1.12×10-2 | 6.92×10-3 | 1.81×10-2 | 1.01422448 | 3.3288 |
六面 | 3.247595 | 15 | 0.649519 | 1.03×10-2 | 6.72×10-3 | 1.70×10-2 | 1.00931267 | 3.4078 |
四面 | 2.5 | 14.14214 | 0.5 | 7.89×10-3 | 6.26×10-3 | 1.41×10-2 | 0.99701373 | 3.6730 |
Tab.10
Calculation results of satellite with different tapers
r/l | 压差阻力/N | 剪切阻力/N | 总阻力/N | 横截面积 阻力系数 | 以2.1030为 参考的比率/% | 计算表面 网格数 |
---|---|---|---|---|---|---|
1/0.25 | 0.1577×10-1 | 0.9369×10-3 | 0.1671×10-1 | 2.1030 | 100.0000 | 9544 |
1/0.5 | 0.1342×10-1 | 0.3164×10-2 | 0.1658×10-1 | 2.0866 | 99.2220 | 8228 |
1/0.6 | 0.1239×10-1 | 0.4193×10-2 | 0.1658×10-1 | 2.0866 | 99.2220 | 4104 |
1/0.7 | 0.1131×10-1 | 0.5198×10-2 | 0.1651×10-1 | 2.0778 | 98.8031 | 4734 |
1/0.8 | 0.1032×10-1 | 0.6169×10-2 | 0.1649×10-1 | 2.0753 | 98.6834 | 4664 |
1/0.9 | 0.9388×10-2 | 0.7081×10-2 | 0.1647×10-1 | 2.0728 | 98.5637 | 5356 |
1/1 | 0.8529×10-2 | 0.7904×10-2 | 0.1643×10-1 | 2.0677 | 98.3244 | 4140 |
1/1.1 | 0.7761×10-2 | 0.8670×10-2 | 0.1643×10-1 | 2.0677 | 98.3244 | 6094 |
1/1.2 | 0.7059×10-2 | 0.9342×10-2 | 0.1640×10-1 | 2.0640 | 98.1448 | 6110 |
1/1.3 | 0.6428×10-2 | 0.9939×10-2 | 0.1637×10-1 | 2.0602 | 97.9653 | 6948 |
1/1.4 | 0.5885×10-2 | 0.1050×10-1 | 0.1639×10-1 | 2.0627 | 98.0850 | 6910 |
1/1.5 | 0.5384×10-2 | 0.1096×10-1 | 0.1634×10-1 | 2.0564 | 97.7858 | 4336 |
1/1.6 | 0.4939×10-2 | 0.1138×10-1 | 0.1632×10-1 | 2.0539 | 97.6661 | 5100 |
1/1.7 | 0.4553×10-2 | 0.1180×10-1 | 0.1635×10-1 | 2.0577 | 97.8456 | 7836 |
1/1.8 | 0.4185×10-2 | 0.1210×10-1 | 0.1628×10-1 | 2.0489 | 97.4267 | 10332 |
1/2 | 0.3600×10-2 | 0.1265×10-1 | 0.1625×10-1 | 2.0451 | 97.2472 | 5238 |
1/3 | 0.1908×10-2 | 0.1428×10-1 | 0.1618×10-1 | 2.0363 | 96.8282 | 10880 |
1/4 | 0.1204×10-2 | 0.1497×10-1 | 0.1617×10-1 | 2.0350 | 96.7684 | 3502 |
1/5 | 0.8374×10-3 | 0.1522×10-2 | 0.1606×10-1 | 2.0212 | 96.1101 | 5638 |
[1] | 郭美婧. 超低轨道卫星轨道维持新思[J]. 科学与财富, 2018, 35: 1-3. |
GUO Meijing. The new thought of orbit keeping of super-low altitude satellite[J]. Science and Wealth, 2018, 35: 1-3. | |
[2] | 陈明. 超低轨道卫星气动力辅助轨道保持应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
CHEN Ming. Application of aeroassisted orbital maintenance to ultra-low-orbit satellite[D]. Harbin: Harbin Institute of Technology, 2010. | |
[3] | 周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348. |
ZHOU Weiyong, ZHANG Yulin, LIU Kun. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348. | |
[4] | 胡鑫, 傅丹膺, 陈罗婧. 超低轨道细长体卫星减阻分析[C]// 北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京航空航天大学出版社, 2015. |
HU Xin, FUDanying, CHENLuojin. Analysis of drag reduction for ultra-low orbit slender body satellites[C]// Proceedings of the 21st Academic Annual Conference of Beijing Mechanics Society and the 22nd Academic Annual Conference of Beijing Society of Vibration Engineering. Beijing: Beihang University Press, 2015. | |
[5] | 黄飞, 赵波, 程晓丽, 等. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. |
HUANG Fei, ZHAO Bo, CHENG Xiaoli, et al. Numerical investigation of aerodynamics on low earth orbit satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76. | |
[6] | 汪宏波, 赵长印, 柳仲贵, 等. 基于误差发散规律的低轨卫星大气阻力系数计算方法[J]. 天文学报, 2016, 57(4): 447-460. |
WANG Hongbo, ZHAO Changyin, LIU Zhonggui, et al. The method for calculating atmospheric drag coefficient based on the characteristics of along-track error in LEO orbit prediction[J]. Acta Astronomica Sinica, 2016, 57(4): 447-460. | |
[7] | JONATHAN A, BERTHOUD L. Reducing spacecraft drag in very low earth orbit through shape optimization[C]// 7th European Conference for Aeronautics and Aerospace Sciences. Milano, Italy: Eucass association: 2017: 1-9. |
[8] | 靳旭红, 黄飞, 程晓丽, 等. 内外流一体化航天器气动特性分析与减阻设计[J]. 宇航学报, 2017, 38(1): 10-17. |
JIN Xuhong, HUANG Fei, CHENG Xiaoli, et al. Analysis of aerodynamic properties and drag-reduction design for spacecraft with an open orifice[J]. Journal of Astronautics, 2017, 38(1): 10-17. | |
[9] | BULLARD J. Satellite drag analysis using direct simulation Monte Carlo (DSMC)[D]. Hertfordshire: University of Hertfordshire, 2018. |
[10] | 靳旭红, 黄飞, 程晓丽, 等. 超低地球轨道卫星大气阻力预测与影响因素分析[J]. 清华大学学报(自然科学版), 2020, 60(3): 219-226. |
JIN Xuhong, HUANG Fei, CHENG Xiaoli, et al. Atmospheric drag on satellites flying in lower low-earth orbit[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 219-226. | |
[11] | ABDUL M, MUHAMMAD N O, MUHAMMAD N Q. Aerodynamic drag computation of lower earth orbit (LEO) satellites[J]. Journal of Space Technology, 2018, 8(1): 82-89. |
[12] | STECKELMACHER W. Molecular gas dynamics and the direct simulation of gas flows[J]. Vacuum, 1996, 47(9): 1140. |
[13] | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Oxford University Press, 1994. |
[14] | BIRD G A. Visual DSMC program for three-dimensional flows. The DS3V program user's guide[DB/OL]. (2006-09-10) [2021-01-05]. https://www.aeromech.usyd.edu.au/dsmc_gab/Resources/DS3VMAN.PDF. |
[1] | SU Hong1 (苏 红), WU Bozhao2 (吴博钊), MAO Xuchu1∗ (茅旭初). Non-Line-of-Sight Multipath Detection Method for BDS/GPS Fusion System Based on Deep Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 844-854. |
[2] | SUN Hongqiang, ZHANG Zhanyue, FANG Yuqiang. Formation Satellite Reconstruction Strategy Based on NSGA-II Algorithm [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 320-330. |
[3] | ZHAO Fang, SUN Jin, ZHAO Jianjun, YANG Libin . Indirect-Inversion Algorithm via Precise Integration for Ill-Conditioned Matrix in Ambiguity Resolution [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 762-768. |
[4] | ZHOU Jian (周剑), YANG Qidong (杨启东), ZHANG Xiaofei (张小飞), HAN Chong (韩崇), SUN Lijuan (孙力娟). Traffic Prediction Method for GEO Satellites Combining ARIMA Model and Grey Model [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 65-69. |
[5] | CHEN Shuhao (陈树浩), MAO Xuchu (茅旭初). Research and Implementation of Beidou-3 Satellite Multi-Band Signal Acquisition and Tracking Method [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 571-578. |
[6] | Wei Xiaona, Xu Haibin, Chen Jinqiang, Dong Yunfeng. A Collaborative Optimization Method by Introducing Subsystem Optimization and Its Application [J]. Air & Space Defense, 2018, 1(2): 1-6. |
[7] | Fu Lili, Peng Qiaole, Zhou Xiaozhou, Zhou Min, Huang Wentao. Design and Simulation of Fast Clustering and Sorting Algorithm on Satellite-borne Electronic Reconnaissance System [J]. Air & Space Defense, 2018, 1(2): 53-58. |
[8] | JIN Jing,YANG Zhaolin,LIU Litong,ZHOU Jianjun. Fully-Integrated Reconfigurable CMOS Global Navigation Satellite System Receivers with High-Linearity [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1226-1233. |
[9] | ZHEN Ruchen (甄儒辰), HAN Chong* (韩充). Link Budget Analysis for Massive-Antenna-Array-Enabled Terahertz Satellite Communications [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(1): 20-27. |
[10] |
GONG Caihe,MAO Xuchu,LI Shaoyuan.
A Fast Satellite Selection Algorithm for BDS/GPS Dual Navigation System [J]. Journal of Shanghai Jiaotong University, 2017, 51(6): 641-646. |
[11] | XU Xiaojun1,2,MA Lihua1,AI Guoxiang1. Satellite Selection with Multi-Objective Genetic Algorithm for Multi-GNSS Constellations [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1520-1528. |
[12] | XIA Hao1,CHEN Changya2,WANG Deyu1. Dynamical Optimization of Satellite Structure Based on Multi-Objective Particle Swarm Optimization Algorithm [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1400-1403. |
[13] | YANG Jing1,HOU Jianwen2,SHI Xiaoping1. Attitude Fault Tolerant Control and Active Vibration Suppression of Flexible Satellite During Orbit Control [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1373-1379. |
[14] | SU Xian-li1,2 (苏先礼), ZHAN Xing-qun1* (战兴群), NIU Man-cang1 (牛满仓), ZHANG Yan-hua1 (张炎华). Receiver Autonomous Integrity Monitoring Availability and Fault Detection Capability Comparison Between BeiDou and GPS [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 313-324. |
[15] | YANG Lili1,CHEN Changya2,WANG Deyu1. Structural Optimization of Satellite Based on MultiObjective Collaborative Optimization Algorithm [J]. Journal of Shanghai Jiaotong University, 2014, 48(10): 1446-1450. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 815
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 814
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||