Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (9): 1080-1086.doi: 10.16183/j.cnki.jsjtu.2020.433
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“能源与动力工程”专题
Previous Articles Next Articles
WANG Yana, CHEN Yaorana, HAN Zhaolonga,b,c, ZHOU Daia,b,c(), BAO Yana,b,c
Received:
2020-12-25
Online:
2021-09-28
Published:
2021-10-08
Contact:
ZHOU Dai
E-mail:zhoudai@sjtu.edu.cn
CLC Number:
WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.433
[1] |
ZHANG Z D, YE L, QIN H, et al. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression[J]. Applied Energy, 2019, 247:270-284.
doi: 10.1016/j.apenergy.2019.04.047 URL |
[2] |
CHEN J, ZENG G Q, ZHOU W, et al. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy Conversion and Management, 2018, 165:681-695.
doi: 10.1016/j.enconman.2018.03.098 URL |
[3] |
KHOSRAVI A, MACHADO L, NUNES R. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil[J]. Applied Energy, 2018, 224:550-566.
doi: 10.1016/j.apenergy.2018.05.043 URL |
[4] |
MORENO S R, LEANDRO D S C. Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System[J]. Renewable Energy, 2018, 126:736-754.
doi: 10.1016/j.renene.2017.11.089 URL |
[5] | 张驰. 风电场短期风速预测若干问题研究[D]. 南京:东南大学, 2017. |
ZHANG Chi. Research on some issues of short-term wind speed forecasting for wind farms[D]. Nanjing: Southeast University, 2017. | |
[6] |
JAHANGIR H, GOLKAR M A, ALHAMELI F, et al. Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN[J]. Sustainable Energy Technologies and Assessments, 2020, 38:100601.
doi: 10.1016/j.seta.2019.100601 URL |
[7] |
SANTHOSH M, VENKAIAH C, KUMAR D M V. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction[J]. Energy Conversion and Management, 2018, 168:482-493.
doi: 10.1016/j.enconman.2018.04.099 URL |
[8] | 范曼萍, 周冬. 基于改进粒子群优化LS-SVM的短期风速预测[J]. 电力学报, 2020, 35(2):123-128. |
FAN Manping, ZHOU Dong. Shortterm wind speed prediction based on improved particle swarm optimization LS-SVM[J]. Journal of Electric Power, 2020, 35(2):123-128. | |
[9] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 URL |
[10] |
TRAPPENBERG T, OUYANG J, BACK A. Input variable selection: Mutual information and linear mixing measures[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1):37-46.
doi: 10.1109/TKDE.2006.11 URL |
[11] |
LIU H, MI X W, LI Y F. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J]. Energy Conversion and Management, 2018, 159:54-64.
doi: 10.1016/j.enconman.2018.01.010 URL |
[12] | PEDREGUSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[J]. Journal of Machine Learning Research, 2011, 12:2825-2830. |
[13] | PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[C]// 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Cana-da: NeurIPS, 2019: 8026-8037. |
[14] |
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3):1247-1250.
doi: 10.5194/gmd-7-1247-2014 URL |
[15] |
QUININO R C, REIS E A, BESSEGATO L F. Using the coefficient of determination R2 to test the significance of multiple linear regression[J]. Teaching Statistics, 2013, 35(2):84-88.
doi: 10.1111/test.2013.35.issue-2 URL |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | SU Hong1 (苏 红), WU Bozhao2 (吴博钊), MAO Xuchu1∗ (茅旭初). Non-Line-of-Sight Multipath Detection Method for BDS/GPS Fusion System Based on Deep Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 844-854. |
[4] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[5] | SHEN Yangwu, SONG Xingrong, LUO Ziren, SHEN Feifan, HUANG Sheng. Inertial Control Strategy for Wind Farm with Distributed Energy Storage System Based on Model Predictive Control [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1285-1293. |
[6] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[7] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[8] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[9] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[10] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[11] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[12] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[13] | WANG Yu, YU Yuefeng, ZHU Xiaolei, ZHANG Zhongxiao. Gas-Fired Flame Stability Based on Optical Flow Method and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 462-470. |
[14] | CAI Yunze, ZHANG Yanjun. Infrared Dim and Small Target Detection Based on Dual-Channel Feature-Enhancement Integrated Attention Network [J]. Air & Space Defense, 2021, 4(4): 14-22. |
[15] | LI Guanyu (李冠玉), ZHANG Fengqin (张凤芹), LIU Qiegen (刘且根) . Distribution-Transformed Network for Impulse Noise Removal [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 543-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||