Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (2): 124-130.doi: 10.16183/j.cnki.jsjtu.2020.99.009
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
Previous Articles Next Articles
SHI Min, CAI Shaowei(), YI Qingming
Received:
2019-10-29
Online:
2021-02-01
Published:
2021-03-03
Contact:
CAI Shaowei
E-mail:caishaowei@stu2017.jnu.edu.cn
CLC Number:
SHI Min, CAI Shaowei, YI Qingming. A Traffic Congestion Prediction Model Based on Dilated-Dense Network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 124-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.99.009
[1] | CHEN P, DING C, LU G, et al. Short-term traffic states forecasting considering spatial-temporal impact on an urban expressway[J]. Transportation Research Record, 2016, 2594(1): 61-72. |
[2] | ZHANG W, YU Y, QI Y. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportation Research Record, 2019, 15 (2): 1688-1711. |
[3] | 陈琛,吴青,高嵩.基于时空因素的水路短期货运量预测[J]. 上海交通大学学报,2019, 53 (5): 556-562. |
CHEN Chen, WU Qing, GAO Song. Short-term shipping freight volume prediction based on temporal-spatial features [J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 556-562. | |
[4] | FENG X, LING X, ZHENG H, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2001-2013. |
[5] | 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息,2017, 17(5): 68-74. |
LUO Wenhui, DONG Baotian, WANG Zesheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. | |
[6] | DENG S, JIA S, CHEN J. Exploring spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data[J]. Applied Soft Computing, 2019, 78(3): 712-721. |
[7] | LIN F, XU Y, YANG Y, et al. A Spatial-temporal hybrid model for short-term traffic prediction[J]. Mathematical Problems in Engineering, 2019, 29(1): 1-12. |
[8] | KANG D, LV Y, CHEN Y. Short-term traffic flow prediction with LSTM recurrent neural network[C]∥2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ, USA: IEEE, 2017: 1-6. |
[9] | AN J, FU L, HU M, et al. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information[J]. IEEE Access, 2019, 21(1): 20708-20722. |
[10] | WANG P, LI L, JIN Y, et al. Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture tra-fficNet [C]∥2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway, NJ, USA: IEEE,2018: 1134-1139. |
[11] | 张伟斌,余英豪,戚湧,等. 基于时空分析和CNN的交通流量短时预测方法[C]∥第十三届中国智能交通年会大会.北京: 电子工业出版社,2018: 349-361. |
ZHANG Weibin, YU Yinghao, QI Yong, et al. Short-term traffic flow prediction based on spatio temporal analysis and CNN deep learning[C]∥The 13th China Intelligent Transportation Annual Meeting. Beijing: Publishing House of Electronics Industry, 2018: 349-361. | |
[12] | LIU Q, WANG B, ZHU Y, et al. Short-term traffic speed forecasting based on attention convolutional neural network for arterials[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(11): 999-1016. |
[13] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]∥International Conference on Learning Representations (ICLR). Montevideo, Uruguay: IEEE, 2016: 1-13. |
[14] | HUANG G, LIU Z, VAN DER, et al. Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 2261-2269. |
[15] | DOLZ J, GOPINATH K, YUAN J, et al. Hyperdense-Net: A hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Transactions on Medical Imaging, 2018, 38(5): 1-13. |
[16] | ZHANG C, ZHANG H, YUAN D, et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(8): 1656-1659. |
[17] | KINGMA D K, BA J L. Adam: A method for stochastic optimization[C]∥International Conference for Learning Representations (ICLR). Montevideo, Uruguay: IEEE, 2018: 6980-6995. |
[1] | HAN Mingyue, WANG Yinglin. Grammatical Error Correction by Transferring Learning Based on Pre-Trained Language Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1554-1560. |
[2] | ZHU Wenmin, LUO Xiaomeng, FAN Xiumin, ZHANG Lei, CAI Junqi. Working Posture Generation Method for Virtual Human Based on Complete Reachable Region Analysis [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1409-1419. |
[3] | CHENG Bin, HUANG Bin, LI Derui. An Image Self-Calibration Method Based on Parallel Laser Ranging [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 850-857. |
[4] | YAN Qing, LU Jiansha, JIANG Weiguang, SHAO Yiping, TANG Hongtao, LI Yingde. Path Optimization of Stacker in Compact Storage System with Dual-Port Layout [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 858-867. |
[5] | GUO Tao, LIU Mingming, CAO Lei, HU Jingzhao, HONG Guojun, YOU Yunxiang. A Numerical Method for Transient Tracking of Sediment Particles in Dredge Pump [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 656-663. |
[6] | LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. |
[7] | HUANG He, WU Kun, LI Xinrui, WANG Jun, WANG Huifeng, RU Feng. A Multi-Feature Particle Filter Vehicle Tracking Algorithm Based on Adaptive Interpolation Moth-Flame Optimization [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 143-155. |
[8] | GUO Jiawei, XU Zhijie, HE Qichang. Design of a Virtual Assembly Gesture Library and Optimization of Ergonomics Evaluation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 127-133. |
[9] | YANG Yiwen, HE Yuesheng, WANG Chunxiang, YANG Ming. A Simple Calibration and Verification Method for Solid-State Lidar [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 98-102. |
[10] | ZHANG Junning, SU Qunxing, WANG Cheng, XU Chao, LI Yining. A Domain Adaptive Semantic Segmentation Network Based on Improved Transformation Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1158-1168. |
[11] | ZHOU Junjie, YU Jianbo. Online Measurement of Machining Tool Wear Based on Machine Vision [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 741-749. |
[12] | WU Guangli, GUO Zhenzhou, LI Leiting, WANG Chengxiang. Video Abnormal Detection Combining FCN with LSTM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614. |
[13] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[14] | SONG Dengqiang, ZHOU Bin, SHEN Xingwang, BAO Jinsong, ZHOU Yaqin. Dynamic Knowledge Graph Modeling Method for Ship Block Manufacturing Process [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 544-556. |
[15] | ZHOU Xin, LAI Xiaoyang, MENG Xiangqun, WANG Kun, TANG Houjun. Promotion of a No Fit Polygon Algorithm Based on Trajectory [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 536-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||