[1]薛洋. 基于单个加速度传感器的人体运动模式识别[D]. 广州:华南理工大学电子与信息学院,2011.[2]Lau S L, David K. Movement recognition using the accelerometer in smartphones[C]∥Future Network and Mobile Summit, 2010. Florence: IEEE, 2010: 19.[3]Preece S J, Goulermas J Y, Kenney L P J, et al. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(3): 871879.[4]He Z Y, Jin L W. Activity recognition from acceleration data using AR model representation and SVM[C]∥Machine Learning and Cybernetics. Kunming: IEEE, 2008: 22452250.[5]Khan M, Ahamed S I, Rahman M, et al. A feature extraction method for real time human activity recognition on cell phones [DB/OL]. (20110605) [20140512].http://epublications.marquette.edu/mscs_fac/183/.[6]Kwapisz J R, Weiss G M, Moore S A. Activity recognition using cell phone accelerometers[J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2): 7482.[7]Chen Y P, Yang J Y, Liou S N, et al. Online classifier construction algorithm for human activity detection using a triaxial accelerometer[J]. Applied Mathematics and Computation, 2008, 205(2): 849860.[8]Anguita D, Ghio A, Oneto L, et al. A public domain dataset for human activity recognition using smartphones[C]∥European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges: ESANN, 2013: 437442.[9]Bao F S, Gao J M, Hu J, et al. Automated epilepsy diagnosis using interictal scalp EEG[C]∥Engineering in Medicine and Biology Society. Minneapolis, MN:IEEE, 2009: 66036607. |