[1]O’Rourke J. Computational geometry in C [M]. 2nd ed. UK: Cambridge University Press, 1998. [2]Igarashi Y, Suzuki H. Cover geometry design using multiple convex hulls [J]. ComputerAided Design, 2011, 43(9): 11541162. [3]Kodell R L, Zhang C, Siegel E R, et al. Selective voting in convexhull ensembles improves classification accuracy [J]. Artificial Intelligence in Medicine, 2012, 54(3): 171179. [4]Choi H B, Ryu J. Convex hullbased velocity transmission capability of parallel manipulators [J]. International Journal of Advanced Manufacturing Technology, 2013, 65(58): 695704. [5]Thomas H C, Charles E L, Ronald L R, et al. Introduction to algorithms, second edition [M]. USA: MIT Press and McGrawHill, 2001: 955956. [6]Graham R L. An efficient algorithm for determining the convex hull of a finite point set [J]. Information Process Letter, 1972, 1(1): 132133. [7]Preparata P F, Hong J S. Convex hulls of finite sets of points in two and three dimensions [J]. Communications of the ACM, 1977, 20(2): 8793. [8]刘斌,王涛. 一种高效的平面点集凸包递归算法[J]. 自动化学报, 2012, 38(8): 13751379. LIU Bin, WANG Tao. An efficient convex hull algorithm for planar point set based on recursive method [J]. Acta Automatica Sinica, 2012, 38(8): 13751379. [9]Liu G H, Chen C B. A new algorithm for computing the convex hull of a planar point set [J]. Journal of Zhejiang University Science A, 2007, 8(8): 12101217. [10]周培德. 计算几何——算法设计与分析[M]. 4版. 北京:清华大学出版社, 2011: 8285. [11]Liu R, Fang B, Tang Y Y, et al. A fast convex hull algorithm with maximum inscribed circle affine transformation [J]. Neurocomputing, 2012, 77(1): 212221. [12]An P T. Method of orienting curves for determining the convex hull of a finite set of points in the plane [J]. Optimization, 2010, 59(2): 175179. [13]王结臣, 陈焱明. 一种栅格辅助的平面点集最小凸包生成算法[J]. 武汉大学学报:信息科学版, 2010, 35(4):403406. WANG Jiechen, CHEN Yanming. A gridaided algorithm for determining the minimum convex hull of a planar point set [J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 403406. |