Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (11): 1707-1715.doi: 10.16183/j.cnki.jsjtu.2022.526
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
CAI Ao1,2, CHEN Mantai1,2(), ZUO Wenkang1,2, DUAN Liping1,2, ZHAO Jincheng1,2
Received:
2022-12-19
Revised:
2023-01-12
Accepted:
2023-02-13
Online:
2024-11-28
Published:
2024-12-02
CLC Number:
CAI Ao, CHEN Mantai, ZUO Wenkang, DUAN Liping, ZHAO Jincheng. Experimental Study and Prediction Model of Low Temperature Mechanical Properties of High-Strength Steel[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1707-1715.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.526
Tab.1
Mechanical properties of HG785 steel at ambient and low temperatures
试样 | t/ mm | T/ ℃ | ET/ GPa | ET/ ETa | IE,P | fyT/ MPa | fyT/ fyTa | Ify,P | fuT/ MPa | fuT/ fuTa | Ifu,P | IE,Test/ IE,P | Ify,Test/ Ify,P | Ifu,Test/ Ifu,P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H6T25 | 6 | 25 | 186 | 1.00 | 1.00 | 615 | 1.00 | 1.00 | 699 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 |
H6T-20 | 6 | -20 | 190 | 1.02 | 1.08 | 695 | 1.13 | 1.06 | 833 | 1.19 | 1.07 | 0.951 | 1.062 | 1.110 |
H6T-40 | 6 | -40 | 205 | 1.10 | 1.12 | 747 | 1.22 | 1.10 | 835 | 1.20 | 1.11 | 0.987 | 1.107 | 1.073 |
H6T-60 | 6 | -60 | 214 | 1.15 | 1.16 | 726 | 1.18 | 1.14 | 855 | 1.22 | 1.16 | 0.988 | 1.039 | 1.056 |
H6T-75 | 6 | -75 | 226 | 1.21 | 1.20 | 756 | 1.23 | 1.17 | 847 | 1.21 | 1.20 | 1.009 | 1.053 | 1.014 |
H8T25 | 8 | 25 | 193 | 1.00 | 1.00 | 627 | 1.00 | 1.00 | 704 | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 |
H8T-20 | 8 | -20 | 201 | 1.04 | 1.08 | 686 | 1.10 | 1.06 | 799 | 1.14 | 1.07 | 0.967 | 1.029 | 1.057 |
H8T-40 | 8 | -40 | 210 | 1.09 | 1.12 | 650 | 1.04 | 1.10 | 745 | 1.06 | 1.11 | 0.972 | 0.945 | 0.950 |
H8T-60 | 8 | -60 | 238 | 1.24 | 1.16 | 662 | 1.06 | 1.14 | 790 | 1.12 | 1.16 | 1.061 | 0.929 | 0.969 |
H8T-75 | 8 | -75 | 218 | 1.13 | 1.20 | 729 | 1.16 | 1.17 | 865 | 1.23 | 1.20 | 0.940 | 0.996 | 1.027 |
平均值 | 0.988 | 1.016 | 1.026 | |||||||||||
变异系数 | 0.034 | 0.054 | 0.049 |
Tab.2
Statistics of full subset regression model for IE,P
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.80 | 0.77 | 1.00 | -34.16 | -33.25 |
2 | t | 0.00 | -0.12 | 28.72 | -18.15 | -17.24 |
3 | ETa | 0.00 | -0.12 | 28.72 | -18.15 | -17.24 |
4 | t,T | 0.80 | 0.74 | 3.00 | -32.16 | -30.95 |
5 | T,ETa | 0.80 | 0.74 | 3.00 | -32.16 | -30.95 |
6 | t,ETa | 0.00 | -0.12 | 28.72 | -16.15 | -14.94 |
7 | t,T,ETa | 0.80 | 0.74 | 3.00 | -30.16 | -28.65 |
Tab.3
Statistics of full subset regression model for Ify,P
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.53 | 0.47 | 8.03 | -25.38 | -24.47 |
2 | t | 0.24 | 0.14 | 16.78 | -20.54 | -19.63 |
3 | fyTa | 0.24 | 0.14 | 16.78 | -20.54 | -19.63 |
4 | t,T | 0.77 | 0.70 | 3.00 | -30.34 | -29.13 |
5 | T,fyTa | 0.77 | 0.70 | 3.00 | -30.34 | -29.13 |
6 | t,fyTa | 0.24 | 0.14 | 16.78 | -18.54 | -17.33 |
7 | t,T,fyTa | 0.77 | 0.70 | 3.00 | -28.34 | -26.82 |
Tab.4
Statistics of full subset regression model for Ifu,P
序号 | 变量 | R2 | 调整后R2 | Cp | AIC | SBC |
---|---|---|---|---|---|---|
1 | T | 0.65 | 0.61 | 3.86 | -27.51 | -26.60 |
2 | fuTa | 0.10 | -0.01 | 19.30 | -18.09 | -17.18 |
3 | t | 0.10 | -0.01 | 19.30 | -18.09 | -17.18 |
4 | T,fuTa | 0.75 | 0.68 | 3.00 | -28.94 | -27.73 |
5 | t,T | 0.75 | 0.68 | 3.00 | -28.94 | -27.73 |
6 | t,fuTa | 0.10 | -0.01 | 19.30 | -16.09 | -14.88 |
7 | t,T,fuTa | 0.75 | 0.68 | 3.00 | -26.94 | -25.42 |
[1] | MA J L, CHAN T M, YOUNG B. Material properties and residual stresses of cold-formed high strength steel hollow sections[J]. Journal of Constructional Steel Research, 2015, 109: 152-165. |
[2] | CHEN M T, YOUNG B. Tests of cold-formed normal and high strength steel tubes under tension[J]. Thin-Walled Structures, 2020, 153: 106844. |
[3] | 班慧勇, 施刚, 石永久, 等. 建筑结构用高强度钢材力学性能研究进展[J]. 建筑结构, 2013, 43(2): 88-94. |
BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Research advances on mechanical properties of high strength structural steels[J]. Building Structure, 2013, 43(2): 88-94. | |
[4] | 徐克龙, 施刚, 林错错. 960 MPa高强度钢材轴压柱局部稳定性能及设计方法[J]. 湖南大学学报(自然科学版), 2017, 44(1): 102-111. |
XU Kelong, SHI Gang, LIN Cuocuo. Analysis and design method on local buckling behavior of 960 MPa high strength steel columns under axial compression[J]. Journal of Hunan University (Natural Sciences), 2017, 44(1): 102-111. | |
[5] | 王卫永, 李国强. 高强钢结构抗火设计理论研究进展[J]. 工业建筑, 2016, 46(7): 61-67. |
WANG Weiyong, LI Guoqiang. Research progress of fire resistance design theory of high strength steel structures[J]. Industrial Construction, 2016, 46(7): 61-67. | |
[6] | MENG X, GARDNER L. Cross-sectional behaviour of cold-formed high strength steel circular hollow sections[J]. Thin-Walled Structures, 2020, 156: 106822. |
[7] | 郭宏超, 万金怀, 刘云贺, 等. Q690D高强钢焊缝连接疲劳性能试验研究[J]. 土木工程学报, 2018, 51(9): 1-9. |
GUO Hongchao, WAN Jinhuai, LIU Yunhe, et al. Experimental study on fatigue performance of Q690D high strength steel welded joints[J]. China Civil Engineering Journal, 2018, 51(9): 1-9. | |
[8] | KE K, ZHANG M Y, YAM M C H, et al. Block shear performance of double-line bolted S690 steel angles under uniaxial tension[J]. Thin-Walled Structures, 2022, 171: 108668. |
[9] | JIANG B H, YAM M C H, KE K, et al. Block shear failure of S275 and S690 steel angles with single-line bolted connections[J]. Journal of Constructional Steel Research, 2020, 170: 106068. |
[10] | LIN X M, YAM M C H, KE K, et al. Investigation of block shear strength of high strength steel bolted connections[J]. Journal of Constructional Steel Research, 2022, 196: 107407. |
[11] | KE K, CHEN Y Y. Seismic performance of MRFs with high strength steel main frames and EDBs[J]. Journal of Constructional Steel Research, 2016, 126: 214-228. |
[12] | ZHOU Z Y, KE K, CHEN Y Y, et al. High strength steel frames with curved knee braces: Performance-based damage-control design framework[J]. Journal of Constructional Steel Research, 2022, 196: 107392. |
[13] | BJORHOVDE R. Development and use of high performance steel[J]. Journal of Constructional Steel Research, 2004, 60(3/4/5): 393-400. |
[14] | 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1): 1-13. |
SHI Gang, BAN Huiyong, SHI Yongjiu, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1): 1-13. | |
[15] | 李国强. 高强结构钢连接研究进展[J]. 钢结构(中英文), 2020, 35(6): 1-40. |
LI Guoqiang. Progress of research on high-strength structural steel connections[J]. Steel Construction, 2020, 35(6): 1-40. | |
[16] | 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构的工程应用及研究进展[J]. 工业建筑, 2012, 42(1): 1-7. |
SHI Gang, BAN Huiyong, SHI Yongjiu, et al. Engineering application and recent research progress on high strength steel structures[J]. Industrial Construction, 2012, 42(1): 1-7. | |
[17] | 范重, 刘先明, 范学伟, 等. 国家体育场大跨度钢结构设计与研究[J]. 建筑结构学报, 2007, 28(2): 1-16. |
FAN Zhong, LIU Xianming, FAN Xuewei, et al. Design and research of large-span steel structure for the National Stadium[J]. Journal of Building Structures, 2007, 28(2): 1-16. | |
[18] | 陈振明, 张耀林, 彭明祥, 等. 国产高强钢及厚板在央视新台址主楼建筑中的应用[J]. 钢结构, 2009, 24(2): 34-38. |
CHEN Zhenming, ZHANG Yaolin, PENG Ming-xiang, et al. Application of high-strength steel and thick steel plates to cctv new site building[J]. Steel Construction, 2009, 24(2): 34-38. | |
[19] | 田黎敏, 郝际平, 戴立先, 等. 深圳湾体育中心结构施工过程模拟分析[J]. 建筑结构, 2011, 41(12): 118-121. |
TIAN Limin, HAO Jiping, DAI Lixian, et al. Simulation analysis on erection procedure of Shenzhen Bay Sports Center[J]. Building Structure, 2011, 41(12): 118-121. | |
[20] | 王元清, 林云, 张延年, 等. 高强度钢材Q460C低温力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(4): 646-652. |
WANG Yuanqing, LIN Yun, ZHANG Yannian, et al. Experimental study on the mechanical properties of Q460C the high strength construction steel at low temperature[J]. Journal of Shenyang Jianzhu University (Natural Science), 2011, 27(4): 646-652. | |
[21] | 王元清, 林云, 张延年, 等. 高强度结构钢材Q460-C低温冲击韧性试验研究[J]. 工业建筑, 2012, 42(1): 8-12. |
WANG Yuanqing, LIN Yun, ZHANG Yannian, et al. Experimental study on the impact toughness of Q460-C high-strength construction steel at low temperature[J]. Industrial Construction, 2012, 42(1): 8-12. | |
[22] | YAN J B, RICHARD LIEW J Y, ZHANG M H, et al. Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment[J]. Materials & Design, 2014, 61: 150-159. |
[23] | YAN J B, LUO Y L, LIN X C, et al. Effects of the Arctic low temperature on mechanical properties of Q690 and Q960 high-strength steels[J]. Construction and Building Materials, 2021, 300: 124022. |
[24] | 荆慧强, 何冠杰, 贾延奎. HG785高强钢焊接残余应力试验研究[J]. 科学技术与工程, 2016, 16(6): 139-142. |
JING Huiqiang, HE Guanjie, JIA Yankui. Experimental study on welded residual stress of HG785 high strength steel[J]. Science Technology and Engineering, 2016, 16(6): 139-142. | |
[25] | 陈丽娟, 赵隆崎, 蔡珍, 等. 合金元素减量化HG785钢的连续冷却转变规律研究[J]. 钢铁研究, 2014, 42(6): 37-39. |
CHEN Lijuan, ZHAO Longqi, CAI Zhen, et al. Research on continuous cooling transformation behavior of alloying elements reduced HG785 steel[J]. Research on Iron and Steel, 2014, 42(6): 37-39. | |
[26] | ASTM. Standard test methods for tension testing of metallic materials: E8/E8M—16a[S]. USA: ASTM International, 2016. |
[27] | CHEN M T, YOUNG B. Tensile tests of cold-formed stainless steel tubes[J]. Journal of Structural Engineering, 2020, 146(9): 04020165. |
[28] | CHEN M T, ZHANG T, GONG Z, et al. Mechanical properties and microstructure characteristics of wire arc additively manufactured high-strength steels[J]. Engineering Structures, 2024, 300: 117092. |
[29] | CHEN M T, GONG Z, ZHANG T, et al. Mechanical behavior of austenitic stainless steels produced by wire arc additive manufacturing[J]. Thin-walled Structures, 2024, 196: 111455. |
[30] | CHEN M T, CHEN Y, ZUO W, et al. Experimental investigation on the tensile behavior of wire arc additively manufactured duplex stainless steel plates[J]. Engineering Structures, 2024, 321: 118764. |
[31] | CHEN M T, PANDEY M, YOUNG B. Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire[J]. Thin-Walled Structures, 2021, 167: 108202. |
[1] | LIU Juncheng, TAN Yong, ZHANG Shengjie. Multi-Step Prediction of Excavation Deformation of Subway Station Based on Intelligent Algorithm [J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117. |
[2] | HU Yafei(胡亚飞), LI Keqing(李克庆), HAN Bin (韩斌), JI Kun(吉坤). Strength Optimization and Prediction of Cemented Tailings Backfill Under Multi-Factor Coupling [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 845-856. |
[3] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军). Color Prediction Model of Gray Hybrid Multifilament Fabric [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[4] | ZHANG Bo(张博),LI Keqing (李克庆),HU Yafei(胡亚飞),JI Kun(吉坤),HAN Bin*(韩斌). Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 686-694. |
[5] | DUAN Hongyan, TANG Guoxin, SHENG Jie, CAO Mengjie, PEI Lei, TIAN Hongwei. A Novel Prediction Model for Fatigue Strength [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 801-808. |
[6] | YUAN Xiaoqi (袁筱祺), ZHU Lelan (朱乐兰), XU Qiongfan(徐琼凡), GAO Wei (高玮). Risk Prediction Model of Gallbladder Disease in Shanghai Middle-Aged and Elderly People Based on Neural Networks [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 153-159. |
[7] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[8] | LIU Changjiang, ZHAO Bing, CHEN Wujun. Test of Uniaxial Tensile Mechanical Properties of ECTFE Foils at Various Temperatures [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 387-393. |
[9] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei. An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems [J]. Air & Space Defense, 2021, 4(2): 1-. |
[10] | ZENG Judan (曾巨丹), CAO Wenjiao (曹文娇), WANG Lihua (王丽华) . Recent Advances and Future Directions of Diagnostic and Prognostic Prediction Models in Ovarian Cancer [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 10-16. |
[11] | ZHOU Lingyun (周凌云), WU Kaiwei (吴凯伟), LIU Hanzhi (刘涵之), GAO Yuanning (高远宁), GAO Xiaofeng (高晓沨). CIRD-F: Spread and Influence of COVID-19 in China [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 147-156. |
[12] | YAN Shuai (闫帅), CAI Daolin (蔡道林), CHEN Yifeng (陈一峰), XUE Yuan (薛媛), LIU Yuanguang (刘源广), WU Lei (吴磊), SONG Zhitang (宋志棠). Reliability Modelling and Prediction Method for Phase Change Memory Using Optimal Pulse Conditions [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 1-9. |
[13] | LI Xuelong,YU Zhongqi,ZHAO Yixi,EVSYUKOV S A. Study on Flange Wrinkling Prediction in Preforming Stage During Multi-Pass Conventional Spinning [J]. Journal of Shanghai Jiaotong University, 2019, 53(11): 1375-1380. |
[14] | JI Liangbo. Precision Prediction Model in Fused Deposition Modeling of Three-Dimensional Printing Based on Wavelet Neural Network [J]. Journal of Shanghai Jiaotong University, 2015, 49(03): 375-378. |
[15] | NIU Qiu-lin1 (牛秋林), DONG Da-peng1 (董大鹏), CHEN Ming1* (陈 明), ZHANG Yu-sheng2 (张余升), WANG Cheng-dong1 (王呈栋). Dry Milling of the Ultra-High-Strength Steel 30CrMnSiNi2A with Coated Carbide Inserts [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(4): 468-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||