Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (5): 582-592.doi: 10.16183/j.cnki.jsjtu.2022.236
Special Issue: 《上海交通大学学报》2023年“生物医学工程”专题
• Biomedical Engineering • Previous Articles Next Articles
Received:
2022-06-21
Revised:
2022-07-26
Accepted:
2022-09-08
Online:
2023-05-28
Published:
2023-06-02
CLC Number:
DUAN Jizhong, QIAN Qingqing. Fast Parallel Imaging Reconstruction Method Based on SIDWT and Iterative Self-Consistency[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 582-592.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.236
Tab.1
Comparison of the values of the reconstruction for dataset 1 by different methods at 3 to 7 times acceleration
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 29.15 | 27.82 | 26.86 | 25.90 | 25.39 |
VSSIM | 0.9879 | 0.9843 | 0.9811 | 0.9775 | 0.9755 | |
VHFEN | 0.0574 | 0.0685 | 0.0788 | 0.0911 | 0.0980 | |
SIDWT-SPIRiT | VSNR | 29.93 | 28.23 | 27.02 | 25.95 | 25.38 |
VSSIM | 0.9902 | 0.9868 | 0.9840 | 0.9815 | 0.9800 | |
VHFEN | 0.0544 | 0.0668 | 0.0791 | 0.0913 | 0.0986 | |
fSIDWT-SPIRiT | VSNR | 29.98 | 28.29 | 27.10 | 26.00 | 25.43 |
VSSIM | 0.9901 | 0.9870 | 0.9842 | 0.9818 | 0.9804 | |
VHFEN | 0.0531 | 0.0658 | 0.0778 | 0.0908 | 0.0984 |
Tab.2
Comparison of the values of the reconstruction for dataset 2 by different methods at 3 to 7 times acceleration
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 27.74 | 26.26 | 25.34 | 24.45 | 23.79 |
VSSIM | 0.9799 | 0.9735 | 0.9683 | 0.9635 | 0.9590 | |
VHFEN | 0.0721 | 0.0887 | 0.1035 | 0.1177 | 0.1321 | |
SIDWT-SPIRiT | VSNR | 27.85 | 26.22 | 25.27 | 24.39 | 23.73 |
VSSIM | 0.9879 | 0.9847 | 0.9826 | 0.9815 | 0.9799 | |
VHFEN | 0.0722 | 0.0900 | 0.1051 | 0.1192 | 0.1332 | |
fSIDWT-SPIRiT | VSNR | 27.87 | 26.26 | 25.32 | 24.44 | 23.77 |
VSSIM | 0.9881 | 0.9850 | 0.9829 | 0.9817 | 0.9805 | |
VHFEN | 0.0720 | 0.0893 | 0.1043 | 0.1184 | 0.1334 |
Tab.3
Comparison of the values of the reconstruction for dataset 3 by different methods at 3 to 7 times acceleration
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 22.87 | 21.78 | 20.94 | 20.03 | 19.11 |
VSSIM | 0.9521 | 0.9411 | 0.9309 | 0.9199 | 0.9082 | |
VHFEN | 0.0644 | 0.0777 | 0.0901 | 0.1070 | 0.1253 | |
SIDWT-SPIRiT | VSNR | 23.87 | 22.36 | 21.35 | 20.34 | 19.31 |
VSSIM | 0.9517 | 0.9382 | 0.9288 | 0.9204 | 0.9073 | |
VHFEN | 0.0617 | 0.0772 | 0.0907 | 0.1076 | 0.1260 | |
fSIDWT-SPIRiT | VSNR | 23.83 | 22.34 | 21.33 | 20.34 | 19.31 |
VSSIM | 0.9507 | 0.9381 | 0.9278 | 0.9196 | 0.9079 | |
VHFEN | 0.0611 | 0.0767 | 0.0902 | 0.1064 | 0.1259 |
Tab.4
Comparison of the values of the reconstruction for dataset 4 by different methods at 3 to 7 times acceleration
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 21.10 | 19.76 | 18.93 | 18.29 | 17.66 |
VSSIM | 0.9414 | 0.9224 | 0.9100 | 0.8963 | 0.8851 | |
VHFEN | 0.1951 | 0.2465 | 0.2801 | 0.3117 | 0.3480 | |
SIDWT-SPIRiT | VSNR | 21.32 | 19.81 | 18.92 | 18.20 | 17.55 |
VSSIM | 0.9615 | 0.9507 | 0.9434 | 0.9369 | 0.9314 | |
VHFEN | 0.1988 | 0.2538 | 0.2878 | 0.3230 | 0.3591 | |
fSIDWT-SPIRiT | VSNR | 21.22 | 19.77 | 18.89 | 18.19 | 17.55 |
VSSIM | 0.9609 | 0.9502 | 0.9432 | 0.9366 | 0.9315 | |
VHFEN | 0.2011 | 0.2531 | 0.2883 | 0.3219 | 0.3591 |
Tab.5
Comparison of reconstruction time for 4 datasets by different methods at 3 to 7 times acceleration
数据集 | 算法 | R=3 | R=4 | R=5 | R=6 | R=7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | m | t | m | t | m | t | m | t | m | ||||||
数据集1 | pFISTA-SPIRiT | 89 | 3.3 | 116 | 3.2 | 194 | 3.3 | 240 | 3.2 | 268 | 3.2 | ||||
SIDWT-SPIRiT | 91 | 3.4 | 121 | 3.4 | 203 | 3.4 | 259 | 3.5 | 303 | 3.6 | |||||
fSIDWT-SPIRiT | 27 | 1.0 | 36 | 1.0 | 59 | 1.0 | 74 | 1.0 | 85 | 1.0 | |||||
数据集2 | pFISTA-SPIRiT | 148 | 4.4 | 216 | 3.8 | 281 | 3.3 | 347 | 3.4 | 426 | 3.6 | ||||
SIDWT-SPIRiT | 128 | 3.8 | 198 | 3.5 | 274 | 3.3 | 313 | 3.1 | 390 | 3.3 | |||||
fSIDWT-SPIRiT | 34 | 1.0 | 57 | 1.0 | 84 | 1.0 | 101 | 1.0 | 120 | 1.0 | |||||
数据集3 | pFISTA-SPIRiT | 133 | 4.0 | 180 | 4.1 | 206 | 3.7 | 247 | 3.6 | 319 | 3.4 | ||||
SIDWT-SPIRiT | 150 | 4.5 | 232 | 5.3 | 293 | 5.3 | 316 | 4.6 | 446 | 4.8 | |||||
fSIDWT-SPIRiT | 33 | 1.0 | 44 | 1.0 | 55 | 1.0 | 68 | 1.0 | 93 | 1.0 | |||||
数据集4 | pFISTA-SPIRiT | 237 | 3.9 | 294 | 3.5 | 358 | 3.3 | 431 | 3.3 | 506 | 3.2 | ||||
SIDWT-SPIRiT | 259 | 4.2 | 343 | 4.0 | 431 | 4.0 | 515 | 3.9 | 625 | 3.9 | |||||
fSIDWT-SPIRiT | 61 | 1.0 | 85 | 1.0 | 107 | 1.0 | 131 | 1.0 | 159 | 1.0 |
[1] |
BROOKES M J, VRBA J, MULLINGER K J, et al. Source localisation in concurrent EEG/fMRI: Applications at 7T[J]. NeuroImage, 2009, 45(2): 440-452.
doi: 10.1016/j.neuroimage.2008.10.047 pmid: 19049883 |
[2] | 吴振洲, 常严, 徐雅洁, 等. 非笛卡尔并行磁共振成像重建技术研究新进展[J]. 仪器仪表学报, 2017, 38(8): 1996-2006. |
WU Zhenzhou, CHANG Yan, XU Yajie, et al. New research advances in non-Cartesian parallel MRI reconstruction[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1996-2006. | |
[3] | HAMILTON J, FRANSON D, SEIBERLICH N. Recent advances in parallel imaging for MRI[J]. Progress in Nuclera Magnetic Resonance Spectroscopy, 2017, 101: 71-95. |
[4] |
PRUESSMANN K P. Encoding and reconstruction in parallel MRI[J]. NMR in Biomedicine, 2006, 19(3): 288-299.
pmid: 16705635 |
[5] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
doi: 10.1109/TIT.2006.871582 URL |
[6] |
ISLAM S R, MAITY S P, RAY A K. Compressed sensing regularized calibrationless parallel magnetic resonance imaging via deep learning[J]. Biomedical Signal Processing and Control, 2021, 66: 102399.
doi: 10.1016/j.bspc.2020.102399 URL |
[7] |
LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-Space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471.
doi: 10.1002/mrm.22428 pmid: 20665790 |
[8] | VASANAWALA S, MURPHY M, ALLEY M, et al. Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients[C]//2011 IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Chicago, USA: IEEE, 2011: 1039-1043. |
[9] | 段继忠, 张立毅, 刘昱, 等. 基于自一致性的磁共振并行成像高效重构算法[J]. 天津大学学报(自然科学与工程技术版). 2014, 47(5): 414-419. |
DUAN Jizhong, ZHANG Liyi, LIU Yu, et al. Efficient reconstruction algorithm for parallel magnetic resonance imaging based on self-consistency[J]. Journal of Tianjin University (Science and Technology), 2014, 47(5): 414-419. | |
[10] | PENG Z X, XU Z, HUANG J Z. RSPIRIT: Robust self-consistent parallel imaging reconstruction based on generalized Lasso[C]//2016 IEEE 13th International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016: 318-321. |
[11] |
TING S T, AHMAD R, JIN N, et al. Fast Implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model[J]. Magnetic Resonance in Medicine, 2017, 77(4): 1505-1515.
doi: 10.1002/mrm.26224 pmid: 27059406 |
[12] |
DUAN J Z, LIU Y, JING P G. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction[J]. Magnetic Resonance Imaging, 2018, 46: 81-89.
doi: S0730-725X(17)30236-9 pmid: 29128678 |
[13] | GUO H Y, LIU P, WANG M, et al. TV-RSPIRiT: Total variation regularized based robust self-consistent parallel imaging reconstruction[C]//2019 International Conference on Medical Imaging Physics and Engineering. Shenzhen, China: IEEE, 2019: 1-4. |
[14] |
ZHANG X L, GUO D, HUANG Y M, et al. Image reconstruction with low-rankness and self-consistency of k-space data in parallel MRI[J]. Medical Image Analysis, 2020, 63: 101687.
doi: 10.1016/j.media.2020.101687 URL |
[15] |
ZHANG X L, LU H F, GUO D, et al. A guaranteed convergence analysis for the projected fast iterative soft-thresholding algorithm in parallel MRI[J]. Medical Image Analysis, 2021, 69: 101987.
doi: 10.1016/j.media.2021.101987 URL |
[16] | 薛方, 许朝萍, 刘耀飞, 等. 基于K空间采样的MRI重建算法研究[J]. 中国医学装备, 2021, 18(8): 1-4. |
XUE Fang, XU Chaoping, LIU Yaofei, et al. Research on MRI reconstruction algorithm based on K-space sampling[J]. China Medical Equipment, 2021, 18(8): 1-4. | |
[17] |
PAN T, DUAN J Z, WANG J F, et al. Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization[J]. Magnetic Resonance Imaging, 2022, 88: 62-75.
doi: 10.1016/j.mri.2022.01.012 pmid: 35114354 |
[18] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
doi: 10.1137/080716542 URL |
[19] |
LIU Y S, ZHAN Z F, CAI J F, et al. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2016, 35(9): 2130-2140.
doi: 10.1109/TMI.2016.2550080 pmid: 27071164 |
[20] |
HU Y H, ZHANG X L, CHEN D C, et al. Spatiotemporal flexible sparse reconstruction for rapid dynamic contrast-enhanced MRI[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 229-243.
doi: 10.1109/TBME.2021.3091881 URL |
[21] |
SCHMIDT J F M, SANTELLI C, KOZERKE S. MR image reconstruction using block matching and adaptive kernel methods[J]. PLoS One, 2016, 11(4): e0153736.
doi: 10.1371/journal.pone.0153736 URL |
[22] |
YING L, SHENG J H. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1196-1202.
pmid: 17534910 |
[23] |
KNOLL F, ZBONTAR J, SRIRAM A, et al. fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2(1): e190007.
doi: 10.1148/ryai.2020190007 URL |
[24] | ZBONTAR J, KNOLL F, SRIRAM A, et al. fastMRI: An open dataset and benchmarks for accelerated MRI[EB/OL]. (2019-12-11) [2022-06-17]. https://arxiv.org/abs/1811.08839. |
[1] | ZHANG Mingzhu(张明珠), MA Yixin* (马艺馨), HUANG Ningning (黄宁宁), GE Hao (葛浩). Survey of EIT Image Reconstruction Algorithms [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 211-218. |
[2] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[3] | JIANG Yilin* (蒋伊琳), WANG Haiyan (王海艳), SHAO Ran (邵然), ZHANG Jianfeng (张建峰). Infrared Image Reconstruction Based on Archimedes Spiral Measurement Matrix [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 204-208. |
[4] |
LIU Cheng1,WANG Dezhong1,QI Tunfeng2,LI Shouping2, WANG Chuan2,ZHANG Wen2 . Tomographic Gamma Scanning Technique for Radioactivity Detection of Nuclear Waste Drum [J]. Journal of Shanghai Jiaotong University, 2010, 44(09): 1287-1291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||