[1] |
王瑞林, 张云飞, 夏朝峰. 四门二盖PVC气泡成因及优化方案[J]. 汽车工艺师, 2019(7): 44-47.
|
|
WANG Ruilin, ZHANG Yunfei, XIA Chaofeng. The causes and solutions of four-door and two-cover PVC air bubbles[J]. Auto Manufacturing Engineer, 2019(7): 44-47.
|
[2] |
高翔, 吕涛. 车门折边胶溢胶问题的解决[J]. 汽车工艺与材料, 2017(3): 35-37.
|
|
GAO Xiang, LV Tao. Solution to the problem of glue overflow in car door folding[J]. Automobile Technology & Material, 2017(3): 35-37.
|
[3] |
LI J J, ZHU W F. Numerical simulation of the roller hemming process based on pressure-viscosity effect[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1): 1023-1039.
doi: 10.1007/s00170-019-04237-5
URL
|
[4] |
LE MAOÛT N, MANACH P Y, THUILLIER S. Influence of prestrain on the numerical simulation of the roller hemming process[J]. Journal of Materials Processing Technology, 2012, 212(2): 450-457.
doi: 10.1016/j.jmatprotec.2011.10.008
URL
|
[5] |
李维康, 张丽桂. 折边胶泡问题的改善途径及评判标准制定[J]. 粘接, 2016, 37(8): 62-66.
|
|
LI Weikang, ZHANG Ligui. Improving methods and criterion setting of bubble defects in PVC hemming sealer[J]. Adhesion, 2016, 37(8): 62-66.
|
[6] |
毕超君, 华云, 贾鹏鹏, 等. PVC焊缝密封胶起泡问题的解决[J]. 电镀与涂饰, 2017, 36(10): 542-544.
|
|
BI Chaojun, HUA Yun, JIA Pengpeng, et al. A solution to blistering of PVC weld adhesive[J]. Electroplating & Finishing, 2017, 36(10): 542-544.
|
[7] |
朱北芳. 汽车门盖折边处密封胶气泡问题的具体解决方法[J]. 汽车实用技术, 2019(19): 176-178.
|
|
ZHU Beifang. Solutions to the air bubble problem in sealant at the hemming position of the car doors[J]. Automobile Applied Technology, 2019(19): 176-178.
|
[8] |
欧阳义平, 杨启. SPH法数值仿真三维切削破岩和切削力估算[J]. 上海交通大学学报, 2016, 50(1): 84-90.
|
|
OUYANG Yiping, YANG Qi. Numerical simulation of rock cutting in 3D with SPH method and estimation of cutting force[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1): 84-90.
|
[9] |
WANG S, SHU A P, RUBINATO M, et al. Numerical simulation of non-homogeneous viscous debris-flows based on the smoothed particle hydrodynamics (SPH) method[J]. Water, 2019, 11(11): 2314.
doi: 10.3390/w11112314
URL
|
[10] |
ZHANG N B, ZHENG X, MA Q W. Study on wave-induced kinematic responses and flexures of ice floe by Smoothed Particle Hydrodynamics[J]. Computers & Fluids, 2019, 189: 46-59.
doi: 10.1016/j.compfluid.2019.04.020
URL
|
[11] |
石秉良, 周孔亢, 张云, 等. 基于SPH算法的驾驶室底部结构对爆炸冲击波响应数值仿真[J]. 机械工程学报, 2016, 52(16): 132-139.
|
|
SHI Bingliang, ZHOU Kongkang, ZHANG Yun, et al. Numerical simulation of the response of vehicle cab bottom shell structure under explosive blast wave based on smoothed particle hydrodynamics[J]. Journal of Mechanical Engineering, 2016, 52(16): 132-139.
|
[12] |
ZHENG Z J, KULASEGARAM S, CHEN P, et al. An efficient SPH methodology for modelling mechanical characteristics of particulate composites[J]. Defence Technology, 2021, 17(1): 135-146.
doi: 10.1016/j.dt.2020.04.003
URL
|
[13] |
SONG H W, PAN P F, REN G Q, et al. SPH/FEM modeling for laser-assisted machining of fused silica[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5/6): 2049-2064.
doi: 10.1007/s00170-019-04727-6
URL
|
[14] |
MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561.
doi: 10.1002/fld.3671
URL
|
[15] |
牛伟龙, 莫蓉, 孙惠斌, 等. 基于光滑粒子流体动力学方法与TANH本构方程的钛合金切屑形态预测[J]. 上海交通大学学报, 2019, 53(5): 624-632.
|
|
NIU Weilong, MO Rong, SUN Huibin, et al. Predication of the titanium alloy’s chip morphology based on TANH constitutive model and smoothed particle hydrodynamic method[J]. Journal of Shanghai Jiao Tong University, 2019, 53(5): 624-632.
|
[16] |
HU W, GUO G N, HU X Z, et al. A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 402-424.
doi: 10.1016/j.cma.2018.10.049
URL
|
[17] |
高耀东, 周同. 基于三维FEM-SPH转换算法的截齿冲击结核体仿真分析[J]. 煤炭学报, 2017, 42(Sup.2): 568-575.
|
|
GAO Yaodong, ZHOU Tong. Numerical simulation and analysis for bit impact on pyrites based on 3D FEM-SPH conversion algorithm[J]. Journal of China Coal Society, 2017, 42(Sup.2): 568-575.
|