传统的深度神经网络由于计算量和内存占用庞大,难以部署到嵌入式平台中发挥实用价值,所以轻量级的深度神经网络得到快速发展.其中,谷歌提出的轻量级架构MobileNet具有广泛的应用.为了进一步提高性能,MobileNet的模型由MobileNetV1发展到MobileNetV3,但模型变得更为复杂,导致其规模不断扩大,难以发挥轻量级模型的优势.为了在能保持MobileNetV3性能的前提下,降低部署于嵌入式平台的难度,提出一种融合MobileNetV3特征的结构化剪枝方法,对MobileNetV3-Large模型进行裁剪,得到一个更加紧凑的模型.首先对模型进行稀疏正则化训练,得到一个较为稀疏的网络模型;然后使用卷积层的稀疏值和批量归一化层的缩放系数的乘积判别冗余滤波器对其进行结构化剪枝,并在CIFAR-10和CIFAR-100数据集上进行实验.实验结果表明:提出的压缩方法可以有效压缩模型参数,并且压缩后模型仍然能保证良好性能;在准确率不变的前提下,CIFAR-10上模型的参数量减少44.5%,且计算量减少40%.