上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 995-1006.doi: 10.16183/j.cnki.jsjtu.2023.448

• 新型电力系统与综合能源 • 上一篇    下一篇

电力市场环境下电力用户电价特征提取和异常识别方法

朱峰1, 单超1, 吴宁1(), 蔡奇新1, 祝宇楠1, 刘云鹏1, 左强2   

  1. 1.国网江苏省电力有限公司 营销服务中心,南京 210019
    2.国网江苏省电力有限公司,南京 210019
  • 收稿日期:2023-09-06 修回日期:2024-03-10 接受日期:2024-03-11 出版日期:2025-07-28 发布日期:2025-07-22
  • 通讯作者: 吴宁 E-mail:wuning@sgcc.com.cn
  • 作者简介:朱 峰(1991—),硕士生,工程师,从事电力市场营销研究.
  • 基金资助:
    国网江苏省电力有限公司科技项目(J2022070)

Feature Extraction and Anomaly Identification Method for Power Customer Price in Power Market Enviroment

ZHU Feng1, SHAN Chao1, WU Ning1(), CAI Qixin1, ZHU Yunan1, LIU Yunpeng1, ZUO Qiang2   

  1. 1. Marketing Service Center of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China
    2. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210019, China
  • Received:2023-09-06 Revised:2024-03-10 Accepted:2024-03-11 Online:2025-07-28 Published:2025-07-22
  • Contact: WU Ning E-mail:wuning@sgcc.com.cn

摘要:

在复杂的电力市场环境和数据信息不完全的条件下,快速识别电力用户电价异常,挖掘电价异常的原因,是促进电力市场的平稳有序运行以及保障电力用户合理利益的关键问题之一.提出一种电力市场环境下电力用户电价特征提取及异常识别方法,首先构建电价特征向量,基于谱聚类算法降低特征向量数据维度,并提取典型电价特征,将其作为判定电价异常的基准;然后逐一计算各电力用户与典型电价特征之间的相似程度,对电价异常进行两阶段分步识别:先从用电和交易行为两方面进行初步识别和快速定位,再在此基础上进行深入识别.案例分析显示该方法能够快速有效提取典型电价特征并识别电价异常.进一步从用电和交易行为两方面分析电价异常原因,并提出相应的改进措施.

关键词: 电力市场, 电价, 谱聚类, 特征提取, 异常识别

Abstract:

Identifying electricity price anomalies and exploring the underlying reasons in such a complex market environment, especially with incomplete data, is a key issue for promoting the orderly operation of power market and ensuring the reasonable interests of power customers. Therefore, a method is established for feature extraction and anomaly identification of electricity prices for power customers. First, an electricity price feature vector is constructed, and its dimensionality is reduced using a spectral clustering algorithm. Then, typical electricity price characteristics are extracted as the basic standard for determining price anomalies. Next, the similarity between each power customer and typical electricity price characteristics is calculated. Finally, electricity price anomalies are identified in two stages. The causes of anomalies are initially and rapidly identified based on electricity consumption and trading behavior, and then further identified in-depth. Case analysis shows that this method can quickly and effectively extract typical electricity price features and identify anomalies. The reasons behind these anomalies are further analyzed from both electricity consumption and trading behaviors, and corresponding improvement measures are proposed.

Key words: power market, electricity price, spectral clustering, feature extraction, anomaly identification

中图分类号: