上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (2): 127-140.doi: 10.16183/j.cnki.jsjtu.2022.500
• 船舶海洋与建筑工程 • 下一篇
收稿日期:
2022-12-07
修回日期:
2023-01-14
接受日期:
2023-02-10
出版日期:
2024-02-28
发布日期:
2024-03-04
通讯作者:
肖龙飞,教授,博士生导师,电话(Tel.):021-34207058;E-mail:xiaolf@sjtu.edu.cn.
作者简介:
张念凡(1998-),博士生,从事海洋结构物波浪砰击研究.
基金资助:
ZHANG Nianfan1,2, XIAO Longfei1,2(), CHEN Gang1,3
Received:
2022-12-07
Revised:
2023-01-14
Accepted:
2023-02-10
Online:
2024-02-28
Published:
2024-03-04
摘要:
波浪砰击是发生在波浪与结构物之间的一种强非线性相互作用,其载荷通常具有峰值大、作用时间短的特点.近年来,海上极端环境导致海洋结构物经常遭受严重的波浪砰击,造成生命和财产损失,从而使得波浪砰击问题备受重视.对于复杂的砰击过程,理论分析和模型实验仅能给出砰击载荷的简化解析解及有限的砰击流场信息,数值模拟逐渐成为研究波浪砰击问题的有效手段.目前,国内外学者已经对海洋结构物的波浪砰击载荷特性、砰击作用过程及其影响因素等问题开展了大量的数值研究,并获得了许多重要的研究结论.针对海洋结构物波浪砰击的数值研究进展、现有方法及重要结论进行综述,为波浪砰击数值模拟的进一步研究提供有益参考.
中图分类号:
张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140.
ZHANG Nianfan, XIAO Longfei, CHEN Gang. A Review of Numerical Studies of Wave Impacts on Marine Structures[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 127-140.
表1
不同数值方法的优缺点和适用范围
数值方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
BEM | ①降低了求解问题的维数,减小计算量 ②能够方便地处理无界区域问题 ③求解精度较高 | ①难以求解非线性问题 ②需要找到合适的格林函数 | 一般用于求解线性水动力问题 |
FDM | ①形式简单,适用性强 ②容易构造出高精度格式 | 对于复杂流体区域的边界形状处理不方便,计算精度易受影响 | 主要适用于结构网格 |
FEM | ①受求解区域单元形状划分的限制低 ②灵活性强,应用范围广 | ①求解复杂问题的耗时长,对计算资源要求高 ②无法较好地处理无界区域问题 | 适用于处理具有复杂几何边界的流场及复杂因素(材料、边界条件)的组合问题 |
FVM | ①离散方程具有很好的守恒性 ②对网格的适应性强 ③在流固耦合分析中,能够与有限元法较好地结合 | 形式复杂,不易提高计算精度 | 适用于流场有大梯度或间断的流动 |
SPH | ①能够更好地模拟自由表面流动 ②计算精度不受网格质量的限制 ③对介质的连续性不要求 | ①边界条件的施加存在难度 ②存在非物理性振荡问题 | 适用于强对流、大变形、高能量流动问题 |
MPS | ①算法简洁高效,数值收敛性好 ②能够与其他网格方法耦合使用 ③无需考虑网格划分问题 | 存在压力振荡现象 | 适用于自由面大变形流动等问题 |
表3
常用的数值造波方法
数值造波方法 | 方法描述 | 优点 | 缺点 |
---|---|---|---|
仿物理造波 | 借鉴物理水池造波原理,采用动网格技术模拟造波板的往复运动进行实现 | ①原理简单 ②易于在物理水池中验证 | ①需要求解网格运动,计算效率偏低 ②无法模拟斜浪和多向波浪的生成 |
速度入口边界造波 | 基于波浪理论,以边界条件形式给出入口边界处的波面形状和水质点速度,随着波浪向计算域内传播,从而实现数值造波 | ①计算效率高 ②使用灵活,可用于复杂波浪的模拟 | 需要配合有效的消波手段和质量修正方法,以保证数值计算的质量守恒 |
源项造波 | 在动量方程中添加质量源项以实现数值造波 | 可以同时实现数值造波、消波和消除二次反射波的影响 | 对于复杂的三维黏性流体问题,难以给出准确的造波源项表达式 |
表4
常用的自由面处理方法
自由液面处理方法 | 方法描述 | 优点 | 缺点 |
---|---|---|---|
VOF法 | 通过计算网格单元中流体所占网格体积的比例,实现对自由面位置的捕捉 | ①良好的质量守恒特性 ②易于实现 | ①依赖网格的细化程度 ②需要进行界面重构,对复杂尖锐界面的模拟效果不理想 |
Level-Set法 | 将两相流的交界面用Level-Set函数的零等值面表示,其中Level-Set函数通常选为带符号的距离函数 | ①能够计算处交界面的曲率、法向向量等几何参数 ②模拟出的自由面形状光滑 | Level-Set 函数的重初始化,可能导致质量不守恒,且会增加计算成本 |
MAC法 | 通过设置标记点的方式跟踪自由面 | 标记点是质量点,可以不参与计算,无需考虑稳定性问题 | ①计算效率较低 ②需要设置相当多的标记点才能得到较准确的自由面 |
表5
波浪砰击问题的数值水池研究汇总
文献 | 结构物 | 自由面处理 | 造波/消波方法 | 波浪 | 数值计算物理量 |
---|---|---|---|---|---|
Choi等[ | 竖直和倾斜立柱 | VOF法 | 源项造波/人工阻尼消波 | 破碎波 | (破碎)波浪砰击力 |
Kamath等[ | 直立圆柱 | Level-Set法 | 波浪松弛区域法[ | 规则波(破碎) | 波浪砰击力 |
Bihs等[ | 直立圆柱、矩形墩柱 | Level-Set法 | 波浪松弛区域法 | 规则波(破碎)、 孤立波 | (破碎)波浪作用力 |
Wang等[ | 半潜式平台 | VOF法 | 源项造波/阻尼项消波 | 内孤立波 | 水平波浪力、垂向波浪力、纵摇力矩 |
Ding等[ | 半潜式平台 | VOF法 | 波浪松弛区域法 | 内孤立波 | 水平与垂向波浪力系数、纵摇力矩系数 |
Henry等[ | 摆式波浪能转换装置 | VOF法/ SPH法 | 源项造波/阻尼项消波 | 五阶Stokes波 | 砰击压力、波浪板的转动角度 |
Martínez-Ferrer 等[ | 摆式波浪能转换装置 | VOF法 | 仿物理造波/主动式消波 | 规则波、聚焦波 | 砰击压力、波浪板的转动角度 |
Shibata等[ | 油轮 | MPS法 | 边界的粒子数变化 | 规则波 | 垂荡位移、纵摇角 |
[1] | VON KÁRMÁN T. The impact on seaplane floats during landing[R]. Washington D.C. USA: National Advisory Committee for Aeronautics, 1929. |
[2] |
KAPSENBERG G K. Slamming of ships: Where are we now?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1947): 2892-2919.
doi: 10.1098/rsta.2011.0118 URL |
[3] |
IBRAHIM R A. Assessment of breaking waves and liquid sloshing impact[J]. Nonlinear Dynamics, 2020, 100(3): 1837-1925.
doi: 10.1007/s11071-020-05605-7 |
[4] | BUCHNER B. The impact of green water on FPSO design[C]// Offshore Technology Conference. Houston, Texas, USA: OTC, 1995: 45-57. |
[5] | HENRY A, SCHMITT P, WHITTAKER T, et al. The characteristics of wave impacts on an oscillating wave surge converter[C]// The Twenty-third International Offshore and Polar Engineering Conference. Anchorage, Alaska, USA: ISOPE, 2013: 566-573. |
[6] |
CUOMO G, ALLSOP W, BRUCE T, et al. Breaking wave loads at vertical seawalls and breakwaters[J]. Coastal Engineering, 2010, 57(4): 424-439.
doi: 10.1016/j.coastaleng.2009.11.005 URL |
[7] | HAYATDAVOODI M, CENGIZ ERTEKIN R. Review of wave loads on coastal bridge decks[J]. Applied Mechanics Reviews, 2016, 68(3): 1-16. |
[8] | BAARHOLM R, FALTINSEN O M, HERFJORD K. Wave impact on decks of floating platforms[C]// Proceedings of the Eighth International Symposium on Practical Design of Ships and Other Floating Structures. Shanghai, China: Elsevier Science Ltd., 2001: 621-627. |
[9] |
CHELLA M A, TØRUM A, MYRHAUG D. An overview of wave impact forces on offshore wind turbine substructures[J]. Energy Procedia, 2012, 20: 217-226.
doi: 10.1016/j.egypro.2012.03.022 URL |
[10] |
KAISER M J, YU Y, JABLONOWSKI C J. Modeling lost production from destroyed platforms in the 2004—2005 Gulf of Mexico hurricane seasons[J]. Energy, 2009, 34(9): 1156-1171.
doi: 10.1016/j.energy.2009.04.032 URL |
[11] |
ZHANG N, XIAO L, GUO Y, et al. Parametric study of wave impact pressure impulse and characteristic pressure on a square column with overhanging deck[J]. Ocean Engineering, 2022, 258: 111722.
doi: 10.1016/j.oceaneng.2022.111722 URL |
[12] |
ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87: 50-63.
doi: 10.1016/j.oceaneng.2014.05.009 URL |
[13] | WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215. |
[14] |
ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612.
doi: 10.1017/S002211209300028X URL |
[15] | ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D.C., USA: National Academy Press, 1996: 408-423. |
[16] |
WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
doi: 10.1016/j.jfluidstructs.2004.01.001 URL |
[17] |
SWIDAN A, AMIN W, RANMUTHUGALA D, et al. Numerical prediction of symmetric water impact loads on wedge shaped hull form using CFD[J]. World Journal of Mechanics, 2013, 3(8): 311-318.
doi: 10.4236/wjm.2013.38033 URL |
[18] |
YU P, ZHANG B, YANG Z, et al. Numerical investigation on the shallow water entry of wedges[J]. IEEE Access, 2019, 7: 170062-170076.
doi: 10.1109/ACCESS.2019.2954141 |
[19] |
WANG S, SOARES C G. Numerical study on the water impact of 3D bodies by an explicit finite element method[J]. Ocean Engineering, 2014, 78: 73-88.
doi: 10.1016/j.oceaneng.2013.12.008 URL |
[20] |
FACCI A L, PANCIROLI R, UBERTINI S, et al. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets[J]. Journal of Fluids and Structures, 2015, 55: 484-500.
doi: 10.1016/j.jfluidstructs.2015.03.018 URL |
[21] |
FACCI A L, PORFIRI M, UBERTINI S. Three-dimensional water entry of a solid body: A computational study[J]. Journal of Fluids and Structures, 2016, 66: 36-53.
doi: 10.1016/j.jfluidstructs.2016.07.015 URL |
[22] |
OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.
doi: 10.1016/j.jcp.2005.09.004 URL |
[23] | ZHANG G, HU T, SUN Z, et al. A δSPH-SPIM coupled method for fluid-structure interaction problems[J]. Journal of Fluids and Structures, 2021, 101: 1-22. |
[24] | ZHANG Y, TANG Z, WAN D. Simulation of water entry of a free-falling wedge by improved MPS method[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 220-227. |
[25] |
ZHANG K, SUN Y J, SUN Z G, et al. An efficient MPS refined technique with adaptive variable-size particles[J]. Engineering Analysis with Boundary Elements, 2022, 143: 663-676.
doi: 10.1016/j.enganabound.2022.07.013 URL |
[26] |
GU H B, QIAN L, CAUSON D M, et al. Numerical simulation of water impact of solid bodies with vertical and oblique entries[J]. Ocean Engineering, 2014, 75: 128-137.
doi: 10.1016/j.oceaneng.2013.11.021 URL |
[27] |
KRASTEV V K, FACCI A L, UBERTINI S. Asymmetric water impact of a two dimensional wedge: A systematic numerical study with transition to ventilating flow conditions[J]. Ocean Engineering, 2018, 147: 386-398.
doi: 10.1016/j.oceaneng.2017.10.048 URL |
[28] |
HU Z, ZHAO X, LI M, et al. A numerical study of water entry of asymmetric wedges using a CIP-based model[J]. Ocean Engineering, 2018, 148: 1-16.
doi: 10.1016/j.oceaneng.2017.11.011 URL |
[29] |
BILANDI R N, JAMEI S, ROSHAN F, et al. Numerical simulation of vertical water impact of asymmetric wedges by using a finite volume method combined with a volume-of-fluid technique[J]. Ocean Engineering, 2018, 160: 119-131.
doi: 10.1016/j.oceaneng.2018.04.043 URL |
[30] | SHEN Z, WAN D. Numerical simulation of sphere water entry problem based on VOF and dynamic mesh methods[C]// The Twenty-first International Offshore and Polar Engineering Conference. Maui, Hawaii, USA: ISOPE, 2011: 695-702. |
[31] |
ZHANG Y, ZOU Q, GREAVES D, et al. A level set immersed boundary method for water entry and exit[J]. Communications in Computational Physics, 2010, 8(2): 265-288.
doi: 10.4208/cicp URL |
[32] | CHENG R Y K. The interaction between a solid body and viscous fluid by marker-and-cell method[R]. Virginia, USA: Old Dominion University, 1976. |
[33] |
BAARHOLM R, FALTINSEN O M. Wave impact underneath horizontal decks[J]. Journal of Marine Science and Technology, 2004, 9(1): 1-13.
doi: 10.1007/s00773-003-0164-4 URL |
[34] | IWANOWSKI B, GRIGORIAN H, SCHERF I. Subsidence of the Ekofisk platforms: Wave in deck impact study—Various wave models and computational methods[C]// International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway: ASME, 2002: 95-102. |
[35] |
REN B, WANG Y. Numerical simulation of random wave slamming on structures in the splash zone[J]. Ocean Engineering, 2004, 31(5-6): 547-560.
doi: 10.1016/j.oceaneng.2003.10.006 URL |
[36] |
QIN H, TANG W, XUE H, et al. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space[J]. Applied Ocean Research, 2017, 64: 155-168.
doi: 10.1016/j.apor.2017.02.008 URL |
[37] | COOKER M J, PEREGRINE D H. Violent water motion at breaking-wave impact[J]. Coastal Engineering Proceedings, 1990 (22): 164-176. |
[38] |
ZHANG S, YUE D K P, TANIZAWA K. Simulation of plunging wave impact on a vertical wall[J]. Journal of Fluid Mechanics, 1996, 327: 221-254.
doi: 10.1017/S002211209600852X URL |
[39] | XIE Z, LU L, STOESSER T, et al. Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(5): 800-804. |
[40] | CHEN H C. Time-domain simulation of nonlinear wave impact loads on fixed offshore platform and decks[J]. International Journal of Offshore and Polar Engineering, 2010, 20(4): 275-283. |
[41] | LU X, KUMAR P, BAHUGUNI A, et al. A CFD study of focused extreme wave impact on decks of offshore structures[C]// International Conference on Offshore Mechanics and Arctic Engineering. San Francisco, California, USA: ASME, 2014: 1-10. |
[42] | JOSE J, CHOI S J, LEE K H, et al. Breaking wave forces on an offshore wind turbine foundation (jacket type) in the shallow water[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 164-172. |
[43] |
WEI Z, DALRYMPLE R A. Numerical study on mitigating tsunami force on bridges by an SPH model[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 365-380.
doi: 10.1007/s40722-016-0054-6 URL |
[44] | 邓燕飞, 杨建民, 肖龙飞, 等. 极端波浪与海洋结构物的强非线性作用研究综述[J]. 船舶力学, 2016, 20(7): 917-928. |
DENG Yanfei, YANG Jianmin, XIAO Longfei, et al. A review on the nonlinear interactions between extreme waves and marine structures[J]. Journal of Ship Mechanics, 2016, 20(7): 917-928. | |
[45] | LIANG X, YANG J, XIAO L, et al. Numerical study of air gap response and wave impact load on a moored semi-submersible platform in predetermined irregular wave train[C]// International Conference on Offshore Mechanics and Arctic Engineering. Shanghai, China: ASME, 2010: 515-524. |
[46] | KIM J S, YOO S O, KIM H J, et al. Experimental and numerical study of horizontal wave impact loads for a semi-submersible drilling unit[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-12. |
[47] | RIVERA-ARREBA I, BRUINSMA N, BACHYNSKI E E, et al. Modeling of a semisubmersible floating offshore wind platform in severe waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(6): 1-11. |
[48] | ZHOU Y, XIAO Q, LIU Y, et al. Investigation of focused wave impact on floating platform for offshore floating wind turbine: A CFD study[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-11. |
[49] | RUDMAN M, CLEARY P, LEONTINI J, et al. Rogue wave impact on a semi-submersible offshore platform[C]// International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 887-894. |
[50] |
RUDMAN M, CLEARY P W. Rogue wave impact on a tension leg platform: The effect of wave incidence angle and mooring line tension[J]. Ocean Engineering, 2013, 61: 123-138.
doi: 10.1016/j.oceaneng.2013.01.006 URL |
[51] |
RUDMAN M, CLEARY P W. The influence of mooring system in rogue wave impact on an offshore platform[J]. Ocean Engineering, 2016, 115: 168-181.
doi: 10.1016/j.oceaneng.2016.02.027 URL |
[52] |
PAN K, IJZERMANS R H A, JONES B D, et al. Application of the SPH method to solitary wave impact on an offshore platform[J]. Computational Particle Mechanics, 2016, 3(2): 155-166.
doi: 10.1007/s40571-015-0069-0 URL |
[53] | 赵艳. 强非线性波与海洋浮式结构物的相互作用[D]. 镇江: 江苏科技大学, 2014. |
ZHAO Yan. Simulation of strongly nonlinear wave and its interaction with floating structure[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. | |
[54] | 赵峰, 吴乘胜, 张志荣, 等. 实现数值水池的关键技术初步分析[J]. 船舶力学, 2015, 19(10): 1209-1220. |
ZHAO Feng, WU Chengsheng, ZHANG Zhirong, et al. Preliminary analysis of key issues in the development of numerical tank[J]. Journal of Ship Mechanics, 2015, 19(10): 1209-1220. | |
[55] | KIM C H, CLEMENT A H, TANIZAWA K. Recent research and development of numerical wave tanks—A review[J]. International Journal of Offshore and Polar Engineering, 1999, 9(4): 241-256. |
[56] | TANIZAWA K. The state of the art on numerical wave tank[C]// Proceedings of 4th Osaka Colloquium on Seakeeping Performance of Ships. Osaka, Japan: Osaka Prefecture University, 2000: 95-114. |
[57] |
CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure’s vibration on breaking wave impact[J]. Ocean Engineering, 2015, 96: 8-20.
doi: 10.1016/j.oceaneng.2014.11.012 URL |
[58] |
KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location[J]. Ocean Engineering, 2016, 128: 105-115.
doi: 10.1016/j.oceaneng.2016.10.025 URL |
[59] |
JACOBSEN N G, FUHRMAN D R, FREDSØE J. A wave generation toolbox for the open-source CFD library: OpenFoam©[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088.
doi: 10.1002/fld.v70.9 URL |
[60] |
BIHS H, KAMATH A, CHELLA M A, et al. A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics[J]. Computers & Fluids, 2016, 140: 191-208.
doi: 10.1016/j.compfluid.2016.09.012 URL |
[61] |
WANG X, ZHOU J F, WANG Z, et al. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms[J]. Ocean Engineering, 2018, 150: 298-308.
doi: 10.1016/j.oceaneng.2017.12.042 URL |
[62] |
DING W, AI C, JIN S, et al. 3D numerical investigation of forces and flow field around the semi-submersible platform in an internal solitary wave[J]. Water, 2020, 12(1): 1-21.
doi: 10.3390/w12010001 URL |
[63] |
LI Y, LIN M. Regular and irregular wave impacts on floating body[J]. Ocean Engineering, 2012, 42: 93-101.
doi: 10.1016/j.oceaneng.2012.01.019 URL |
[64] |
MARTÍNEZ-FERRER P J, QIAN L, MA Z, et al. Improved numerical wave generation for modelling ocean and coastal engineering problems[J]. Ocean Engineering, 2018, 152: 257-272.
doi: 10.1016/j.oceaneng.2018.01.052 URL |
[65] |
SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Lagrangian simulations of ship-wave interactions in rough seas[J]. Ocean Engineering, 2012, 42: 13-25.
doi: 10.1016/j.oceaneng.2012.01.016 URL |
[1] | 徐浩东, 余童真, 樊伟, 李明广, 刘念武. 顶管施工过程中浆液扩散对减阻效果影响[J]. 上海交通大学学报, 2024, 58(7): 1067-1074. |
[2] | 冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467. |
[3] | 郭同彪, 张吉, 李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究[J]. 空天防御, 2024, 7(2): 29-35. |
[4] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[5] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[6] | 贺文选, 叶茂盛, 张雨, 张雅泰, 代晓辉, 张崎. 悬挂链在磨损条件下的极限强度评估[J]. 海洋工程装备与技术, 2024, 11(1): 23-29. |
[7] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[8] | 管延敏, 杨彩虹, 康庄, 周利. 一种改进GPU加速策略在光滑粒子流体动力学方法中的应用[J]. 上海交通大学学报, 2023, 57(8): 981-987. |
[9] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[10] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[11] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[12] | 高畅. 深水半潜平台结构应急响应研究与应用[J]. 海洋工程装备与技术, 2023, 10(2): 95-100. |
[13] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[14] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[15] | 操太春, 吴刚, 孔祥逸, 于东玮, 吴琳, 张大勇. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||