J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1151-1160.doi: 10.1007/s12204-022-2541-3
邓贺方,夏凯龙,滕金芳,羌晓青,朱铭敏,卢少鹏
收稿日期:
2022-04-27
接受日期:
2022-06-01
出版日期:
2024-11-28
发布日期:
2024-11-28
DENG Hefang (邓贺方), XIA Kailong (夏凯龙), TENG Jinfang (滕金芳),QIANG Xiaoqing (羌晓青), ZHU Mingmin∗ (朱铭敏), LU Shaopeng (卢少鹏)
Received:
2022-04-27
Accepted:
2022-06-01
Online:
2024-11-28
Published:
2024-11-28
摘要: 在轴向压气机中,由于机匣摩擦或机匣处理,经常会出现沟槽型机匣。然而,沟槽型机匣对轴流压气机气动性能的影响尚未完全了解,特别是在不同转速下。因此,数值研究了在两种转速下,沟槽型机匣对跨声速压气机的影响。对其整体性能和流动特性进行了详细的比较。结果表明,在堵塞工况附近,沟槽构型略微提高了总压比和质量流量,但在小质量流量工况下降低了总压比和绝热效率。平行沟槽和沟槽内情况的最大效率降低超过1%,位于90%跨度附近的叶片中间通道。在两种转速下,沟槽构型对失速裕度的影响是不同的。在100%转速下,沟槽外和沟槽内情况分别使失速裕度提高2.8%和1.1%,而平行沟槽由于叶尖泄漏涡核心区域堵塞增加,使失速裕度降低1.3%。在80%转速下,沟槽构型的失速裕度变差。由于叶片中间通道的堵塞增加,平行沟槽和沟槽内情况分别降低了2.9%和2.1%的失速裕度。虽然两种转速下的沟槽结构的流动特性存在一定的差异,但失速裕度的变化始终取决于叶尖附近的阻塞。这项工作有助于进一步了解沟槽型机匣对轴向压气机的影响。
中图分类号:
邓贺方, 夏凯龙, 滕金芳, 羌晓青, 朱铭敏, 卢少鹏. 不同转速下沟槽型机匣对跨声速压气机性能的影响[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1151-1160.
DENG Hefang (邓贺方), XIA Kailong (夏凯龙), TENG Jinfang (滕金芳), QIANG Xiaoqing (羌晓青), ZHU Mingmin∗ (朱铭敏), LU Shaopeng (卢少鹏). Performance Effect of Trench Casing on a Transonic Compressor at Different Rotating Speeds[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1151-1160.
[1] LEGRAND M, BATAILLY A, PIERRE C. Numerical investigation of abradable coating removal in aircraft engines through plastic constitutive law [J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(1):011010. [2] BEHESHTI B H, TEIXEIRA J A, IVEY P C, et al.Parametric study of tip clearance—casing treatment on performance and stability of a transonic axial compressor [J]. Journal of Turbomachinery, 2004, 126(4):527-535. [3] WISLER D C, BEACHER B F. Improved compressor performance using recessed clearance (trenches) [J].Journal of Propulsion and Power, 1989, 5(4): 469-475. [4] DENTON J D. The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines [J]. Journal of Turbomachinery, 1993, 115(4): 621-656. [5] WISLER D C. Loss reduction in axial-flow compressors through low-speed model testing [J]. Journal of Engineering for Gas Turbines and Power, 1985,107(2): 354-363. [6] SAKULKAEW S, TAN C S, DONAHOO E, et al.Compressor efficiency variation with rotor tip gap from vanishing to large clearance [J]. Journal of Turbomachinery, 2013, 135(3): 031030. [7] WILLIAMS R, GREGORY-SMITH D, HE L, et al.Experiments and computations on large tip clearance effects in a linear cascade [J]. Journal of Turbomachinery, 2010, 132(2): 021018. [8] GBADEBO S A, CUMPSTY N A, HYNES T P. Interaction of tip clearance flow and three-dimensional separations in axial compressors [J]. Journal of Turbomachinery, 2007, 129(4): 679-685. [9] JOHN A, QIN N, SHAHPAR S. The impact of realistic casing geometries and clearances on fan blade tip aerodynamics [J]. Journal of Turbomachinery, 2018,140(6): 061002. [10] HOU J, LIU Y. Effect of sloped trench casing treatment on performance and stability of axial compressors [C]//ASME Turbo Expo 2020 : Turbomachinery Technical Conference and Exposition. Online: ASME,2020: GT2020-16019. [11] DAY I J, BREUER T, ESCURET J, et al. Stall inception and the prospects for active control in four high-speed compressors [J]. Journal of Turbomachinery, 1999, 121(1): 18-27. [12] ZHANG H G, TAN F, AN K, et al. Mechanism of internal flow instability in transonic axial flow compressor at different rotating speeds [J]. Journal of Aerospace Power, 2018, 33(6): 1370-1380 (in Chinese). [13] ZHU M M, TENG J F, QIANG X Q. Unsteady nearstall flow mechanisms in a transonic compressor rotor at different rotating speeds [J]. Aerospace Science and Technology, 2021, 119: 107124. [14] GOSWAMI S, GOVARDHAN M. Impact of sweep on part speed performance of an axial compressor rotor with circumferential casing grooves [C]//ASME 2019 Gas Turbine India Conference. Chennai: ASME, 2019:GTINDIA2019-2575. [15] SUDER K L. Experimental investigation of the flow field in a transonic, axial flow compressor with respect to the development of blockage and loss [D]. Cleveland:Case Western Reserve University, 1996. [16] REID L, MOORE R D. Performance of single axial flow transonic compressor with rotor and stator aspect ratio of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82 [M]. Washington: NASA, 1978. [17] CHIMA R. SWIFT code assessment for two similar transonic compressors [C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009: 1058. |
[1] | 徐浩东, 余童真, 樊伟, 李明广, 刘念武. 顶管施工过程中浆液扩散对减阻效果影响[J]. 上海交通大学学报, 2024, 58(7): 1067-1074. |
[2] | 冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467. |
[3] | 王 慧, 杜登轩, 刘海超, 喻国良, 张民曦. 均匀来流中带环翼的复合桩墩的局部冲刷数值试验研究[J]. 海洋工程装备与技术, 2024, 11(3): 1-9. |
[4] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[5] | 张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140. |
[6] | 郭同彪, 张吉, 李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究[J]. 空天防御, 2024, 7(2): 29-35. |
[7] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[8] | 韩雪阳, 吴琳, 刘志兵, 于东玮, 孔祥逸, 张大勇. 电伴热下极地装备踏步板构件的对流换热影响[J]. 上海交通大学学报, 2024, 58(11): 1687-1697. |
[9] | 贺文选, 叶茂盛, 张雨, 张雅泰, 代晓辉, 张崎. 悬挂链在磨损条件下的极限强度评估[J]. 海洋工程装备与技术, 2024, 11(1): 23-29. |
[10] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[11] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[12] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[13] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[14] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[15] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||