上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (4): 447-457.doi: 10.16183/j.cnki.jsjtu.2023.342
收稿日期:
2023-07-24
修回日期:
2023-12-15
接受日期:
2023-12-29
出版日期:
2025-04-28
发布日期:
2025-05-09
通讯作者:
侯远杭
E-mail:houyuanhang@dlmu.edu.cn
作者简介:
巩 超(1996—),硕士生,从事海洋结构物水动力性能研究.
基金资助:
GONG Chao1, HOU Yuanhang1(), ZHANG Yuqi1, LIU Dianyong1, WAN Yuejin2
Received:
2023-07-24
Revised:
2023-12-15
Accepted:
2023-12-29
Online:
2025-04-28
Published:
2025-05-09
Contact:
HOU Yuanhang
E-mail:houyuanhang@dlmu.edu.cn
摘要:
船舶在遭遇畸形波浪时,瞬间的冲击会使波浪载荷急剧变化,严重时甚至会造成船舶倾覆.为探索能有效抵御异常波浪冲击的特种船型,以对极端海况下高强度波浪载荷具有优良适应性的某型埋首式无人艇为研究对象,分析了其在多种波浪环境下的运动特性.首先基于雷诺平均Navier-Stokes方程(RANS),考虑了不同波幅的五阶Stokes波、畸形波对无人艇水面运动的影响;其次使用动态流体固体相互作用(DFBI)模型对船舶纵摇和垂荡两个自由度的运动进行分析;再次对仿真结果进行可视化处理,分析了船体表面压力、总阻力、运动响应和载荷特性.结果发现:随着波幅增加,埋首式无人艇的波浪载荷增大,运动响应更加剧烈;与五阶Stokes波相比,无人艇在畸形波中的波浪载荷更小,对船体结构安全具有较好的保护性,原因在于埋首式无人艇首部集合了锥形船首与球鼻艏的优势,对流经船首的波浪产生了分散、分割的效果,有效抑制了波浪的冲击力,保证了无人艇在极端海况下的航行安全.研究结果可为埋首式无人艇在畸形波等极端海况下的安全航行提供技术支撑.
中图分类号:
巩超, 侯远杭, 张宇骐, 刘殿勇, 万跃进. 畸形波浪环境下的埋首式无人艇水面运动特性[J]. 上海交通大学学报, 2025, 59(4): 447-457.
GONG Chao, HOU Yuanhang, ZHANG Yuqi, LIU Dianyong, WAN Yuejin. Characterization of Surface Motion of Submerged Unmanned Ship in Freak Waves Environment[J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 447-457.
[1] | HAVER S. Freak wave event at Draupner jacket January 1 1995[EB/OL]. (2003-05-08)[2023-07-24]. https://home.itp.ac.ru/-alexd/HSE/Haver2004.pdf. |
[2] | DIDENKULOVA E, DIDENKULOVA I, MEDVEDEV I. Freak wave events in 2005—2021: Statistics and analysis of favourable wave and wind conditions[J]. Natural Hazards and Earth System Sciences, 2023, 23(4): 1653-1663. |
[3] | ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87: 50-63. |
[4] | HUO F, YANG H, YAO Z, et al. Study on slamming pressure characteristics of platform under freak wave[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1266. |
[5] | CHANG S, HUANG W, LIU F, et al. Influence of second-order wave force and focusing position on dynamic responses of tension leg platform under a freak wave[J]. Ocean Engineering, 2021, 242: 110126. |
[6] |
秦浩, 唐文勇, 薛鸿祥. 非线性畸形波所致的平台底部砰击载荷及结构响应数值模拟[J]. 上海交通大学学报, 2018, 52(9): 1009-1016.
doi: 10.16183/j.cnki.jsjtu.2018.09.001 |
QIN Hao, TANG Wenyong, XUE Hongxiang. Numerical simulations of impact loads and structural responses of bottom decks of platforms caused by nonlinear freak waves[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1009-1016. | |
[7] | ZHONG W, ZHANG X, WAN D. Hydrodynamic characteristics of a 15 MW semi-submersible floating offshore wind turbine in freak waves[J]. Ocean Engineering, 2023, 283: 115094. |
[8] | WANG J, QIN H, HU Z, et al. Three-dimensional study on the interaction between a container ship and freak waves in beam sea[J]. International Journal of Naval Architecture and Ocean Engineering, 2023, 15: 100509. |
[9] | VÁSQUEZ G, FONSECA N, SOARES C G. Experimental and numerical vertical bending moments of a bulk carrier and a roll-on/roll-off ship in extreme waves[J]. Ocean Engineering, 2016, 124: 404-418. |
[10] | QIN H, TANG W, XUE H, et al. Numerical study of wave impact on the deck-house caused by freak waves[J]. Ocean Engineering, 2017, 133: 151-169. |
[11] | ZHANG H, TANG W, YUAN Y, et al. The three-dimensional green-water event study on a fixed simplified wall-sided ship under freak waves[J]. Ocean Engineering, 2022, 251: 111096. |
[12] | 谈果戈. 双尾半潜无人艇近自由液面操纵性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
TAN Guoge. Research on near free liquid surface maneuverability of double-tailed semi-submersible unmanned craft[D]. Harbin: Harbin Engineering University, 2017. | |
[13] | 李冰, 管官, 关贵注, 等. 特种半潜式无人航行器的优化设计[J]. 船舶工程, 2018, 40(6): 95-99. |
LI Bing, GUAN Guan, GUAN Guizhu, et al. Optimized design of special semi-submersible unmanned aerial vehicle[J]. Ship Engineering, 2018, 40(6): 95-99. | |
[14] | 王伟. 畸形波对海洋工程结构物砰击作用的数值研究[D]. 大连: 大连理工大学, 2021. |
WANG Wei. Numerical study of the effect of aberrant waves on the banging of marine engineering structures[D]. Dalian: Dalian University of Technology, 2021. | |
[15] | LIU D, LI F, LIANG X. Numerical study on green water and slamming loads of ship advancing in freaking wave[J]. Ocean Engineering, 2022, 261: 111768. |
[16] | 潘文博. 畸形波对系泊浮体动力响应影响试验研究[D]. 大连: 大连理工大学, 2021. |
PAN Wenbo. Experimental study on the effect of distorted waves on the dynamic response of moored floats[D]. Dalian: Dalian University of Technology, 2021. | |
[17] | 李金宣. 多向聚集极限波浪的模拟研究[D]. 大连: 大连理工大学, 2008. |
LI Jinxuan. Simulation study of multidirectional aggregated limit waves[D]. Dalian: Dalian University of Technology, 2008. | |
[18] | GODA Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering Journal, 1999, 41(1): 1-20. |
[19] | 扈喆. 畸形波数值模拟及其对结构物的作用[D]. 上海: 上海交通大学, 2017. |
HU Zhe. Numerical simulation of anomalous waves and their effects on structures[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
[20] | WAN Y, HOU Y, XIONG Y, et al. Interval optimization design of a submersible surface ship form considering the uncertainty of surrogate model[J]. Ocean Engineering, 2022, 263: 112262. |
[21] | 沈志荣. 船桨舵相互作用的重叠网格技术数值方法研究[D]. 上海: 上海交通大学, 2014. |
SHEN Zhirong. Numerical method study on overlapping grid technology for interaction between propellers and rudders[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
[22] | LI X, DENG Y, LI L, et al. Motion and dynamic responses of a semisubmersible in freak waves[J]. China Ocean Engineering, 2017, 31: 754-763. |
[23] | LIU W Q, SUZUKI K, SHIBANUMA K. Nonlinear dynamic response and structural evaluation of container ship in large freak waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137(1): 011601. |
[24] | 陈淑玲, 邹蓓蕾, 仲亚, 等. 具有不同首柱角的高速水面无人艇耐波性能研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(6): 9-14. |
CHEN Shuling, ZOU Beilei, ZHONG Ya, et al. Research on wave resistance of high-speed surface unmanned craft with different bow angles[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(6): 9-14. |
[1] | 李易, 欧树彦, 梁伟栋, 董佳宝, 庄至栋. 飞行器低空大动压整流罩旋抛分离数值模拟[J]. 空天防御, 2025, 8(1): 102-108. |
[2] | 徐浩东, 余童真, 樊伟, 李明广, 刘念武. 顶管施工过程中浆液扩散对减阻效果影响[J]. 上海交通大学学报, 2024, 58(7): 1067-1074. |
[3] | 邓贺方, 夏凯龙, 滕金芳, 羌晓青, 朱铭敏, 卢少鹏. 不同转速下沟槽型机匣对跨声速压气机性能的影响[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1151-1160. |
[4] | 高宁波1, 张永涛2, 3, 张鸿4. 畸形波与底部固定垂直圆柱相互作用的CFD研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 809-816. |
[5] | 冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467. |
[6] | 刘羿伯1, 毕羽琴1, 马 强2, 3, 肖华平1, 刘书海1. 水下螺旋轴流混输泵叶轮的结构设计与优化[J]. 海洋工程装备与技术, 2024, 11(4): 14-20. |
[7] | 王 慧, 杜登轩, 刘海超, 喻国良, 张民曦. 均匀来流中带环翼的复合桩墩的局部冲刷数值试验研究[J]. 海洋工程装备与技术, 2024, 11(3): 1-9. |
[8] | 郭同彪, 张吉, 李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究[J]. 空天防御, 2024, 7(2): 29-35. |
[9] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[10] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[11] | 张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140. |
[12] | 韩雪阳, 吴琳, 刘志兵, 于东玮, 孔祥逸, 张大勇. 电伴热下极地装备踏步板构件的对流换热影响[J]. 上海交通大学学报, 2024, 58(11): 1687-1697. |
[13] | 贺文选, 叶茂盛, 张雨, 张雅泰, 代晓辉, 张崎. 悬挂链在磨损条件下的极限强度评估[J]. 海洋工程装备与技术, 2024, 11(1): 23-29. |
[14] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[15] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||