上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (4): 435-446.doi: 10.16183/j.cnki.jsjtu.2023.302
• 船舶海洋与建筑工程 • 下一篇
收稿日期:
2023-07-06
修回日期:
2023-12-14
接受日期:
2024-01-17
出版日期:
2025-04-28
发布日期:
2025-05-09
通讯作者:
高志亮
E-mail:zlgao@hotmail.com
作者简介:
薛 文(1997—),硕士生,从事船舶水动力性能研究.
基金资助:
Received:
2023-07-06
Revised:
2023-12-14
Accepted:
2024-01-17
Online:
2025-04-28
Published:
2025-05-09
Contact:
GAO Zhiliang
E-mail:zlgao@hotmail.com
摘要:
为了实现更能表征真实海浪特征的不规则波群的有效模拟,结合不规则波群理论生成方法,开发基于半混合欧拉-拉格朗日边界元方法的数值波浪水池.首先,分析不同模型参数对数值计算的影响.研究发现,波浪模拟精度随阻尼层长度的增加和时间步长的减小而提高,适当的源点外移距离、源点分布范围和源点数量能兼顾计算精度和稳定性.然后,基于验证的模型参数对单向不规则波群进行模拟,将数值模拟结果与物理试验结果和理论目标值进行对比,验证数值水池对不规则波群模拟的有效性.结果表明,所开发的数值水池能有效模拟不规则波群的生成和传播.
中图分类号:
薛文, 高志亮. 基于半混合欧拉-拉格朗日边界元法不规则波群模拟[J]. 上海交通大学学报, 2025, 59(4): 435-446.
XUE Wen, GAO Zhiliang. Irregular Wave Groups Simulation Based on Semi-Mixed Eulerian-Lagrangian Boundary Element Method[J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 435-446.
表1
不同模型参数下波浪参数误差对比
参数 | 取值 | H1/3/m | T1/3/s | |||||
---|---|---|---|---|---|---|---|---|
目标 值 | 计算 值 | 相对 误差/% | 目标 值 | 计算 值 | 相对 误差/% | |||
L1 | λ0 | 0.2 | 0.197 | -1.5 | 2.22 | 2.258 | 1.7 | |
2λ0 | 0.2 | 0.199 | -0.5 | 2.22 | 2.253 | 1.5 | ||
3λ0 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
L2 | λ0 | 0.2 | 0.203 | 1.5 | 2.22 | 2.248 | 1.2 | |
2λ0 | 0.2 | 0.201 | 0.5 | 2.22 | 2.224 | 0.2 | ||
4λ0 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
α1 | 2 | 0.2 | 0.199 | -0.5 | 2.22 | 2.214 | -0.3 | |
3 | 0.2 | 0.200 | 0.0 | 2.22 | 2.213 | -0.4 | ||
4 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
5 | 0.2 | 0.200 | 0.0 | 2.22 | 2.205 | -0.7 | ||
6 | 0.2 | 0.200 | 0.0 | 2.22 | 2.239 | 0.8 | ||
α2 | 2 | 0.2 | 0.199 | -0.5 | 2.22 | 2.233 | 0.6 | |
3 | 0.2 | 0.200 | 0.0 | 2.22 | 2.230 | 0.4 | ||
4 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
5 | 0.2 | 0.201 | 0.5 | 2.22 | 2.210 | -0.5 | ||
6 | 0.2 | 0.200 | 0.0 | 2.22 | 2.214 | -0.3 | ||
β | 0.1 | 0.2 | 0.198 | -1.0 | 2.22 | 2.228 | 0.4 | |
0.2 | 0.2 | 0.199 | -0.5 | 2.22 | 2.235 | 0.6 | ||
0.3 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
0.4 | 0.2 | 0.199 | -0.5 | 2.22 | 2.233 | 0.6 | ||
0.5 | 0.2 | 0.192 | -4.0 | 2.22 | 2.249 | 1.3 | ||
ld | 0.5 | 0.2 | 0.198 | -1.0 | 2.22 | 2.252 | 1.4 | |
0.6 | 0.2 | 0.198 | -1.0 | 2.22 | 2.241 | 0.9 | ||
0.7 | 0.2 | 0.199 | -0.5 | 2.22 | 2.243 | 1.0 | ||
0.8 | 0.2 | 0.200 | 0.0 | 2.22 | 2.240 | 0.9 | ||
0.9 | 0.2 | 0.200 | 0.0 | 2.22 | 2.243 | 1.0 | ||
1.0 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
d | λ0/20 | 0.2 | 0.177 | -11.5 | 2.22 | 2.219 | -0.1 | |
λ0/10 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
λ0/5 | 0.2 | 0.198 | -1.0 | 2.22 | 2.222 | 0.1 | ||
nx×nz | 20×4 | 0.2 | 0.199 | -0.5 | 2.22 | 2.200 | -0.9 | |
20×6 | 0.2 | 0.200 | 0.0 | 2.22 | 2.236 | 0.7 | ||
20×8 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 | ||
15×8 | 0.2 | 0.191 | -4.5 | 2.22 | 2.275 | 2.5 | ||
25×8 | 0.2 | 0.204 | 2.0 | 2.22 | 2.193 | -1.2 | ||
Δt | T0/100 | 0.2 | 0.191 | -4.5 | 2.22 | 2.036 | -8.3 | |
T0/150 | 0.2 | 0.204 | 2.0 | 2.22 | 2.163 | -2.6 | ||
T0/200 | 0.2 | 0.199 | -0.5 | 2.22 | 2.223 | 0.1 |
[1] | TANG H, HUANG C. Bragg reflection in a fully nonlinear numerical wave tank based on boundary integral equation method[J]. Ocean Engineering, 2008, 35 (17/18): 1800-1810. |
[2] | 李裕龙, 朱仁传, 缪国平. 基于全时域势流理论的船舶与液舱晃荡耦合运动的数值计算[J]. 船舶力学, 2016, 20 (11): 1369-1380. |
LI Yulong, ZHU Renchuan, MIU Guoping. Numerical method of ship motions coupled with tank sloshing based on fully time domain potential flow theory[J]. Ship Mechanics, 2016, 20 (11): 1369-1380. | |
[3] | 卜淑霞, 鲁江, 顾民. 基于三维时域混合源法的顶浪不规则波参数横摇研究[J]. 船舶力学, 2018, 22 (8): 926-934. |
PU Shuxia, LU Jiang, GU Min. Research on parameter roll of irregular top wave based on three-dimensional time-domain mixed source method[J]. Ship Mechanics, 2018, 22 (8): 926-934. | |
[4] | WANG L X, TANG H, WU Y H. Simulation of wave-body interaction: A desingularized method coupled with acceleration potential[J]. Journal of Fluids & Structures, 2015, 52: 37-48. |
[5] | ZHANG X T, KHOO B C, LOU J. Application of desingularized approach to water wave propagation over three-dimensional topography[J]. Ocean Engineering, 2007, 34 (10): 1449-1458. |
[6] | 沈王刚. 基于FMBEM的数值波浪水池及非线性波浪重构方法[D]. 上海: 上海交通大学, 2018. |
SHENG Wanggang. A numerical wave pool and nonlinear wave reconstruction method based on FMBEM[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
[7] | XU G, BAI X, MA X, et al. Numerical simulation of fully nonlinear NWT by DBIEM method with MTF for the downstream boundary[J]. Journal of Ship Mechanics, 2017, 21 (9): 1062-1070. |
[8] | XU G, ZHAO G, CHEN J, et al. The numerical analysis of the flow on the smooth and nonsmooth boundaries by IBEM/DBIEM[J]. Mathematical Problems in Engineering, 2019, 2019 (3): 1-14. |
[9] | FENG A, CHEN Z, PRICE W G. A desingularized Rankine source method for nonlinear wave-body interaction problems[J]. Ocean Engineering, 2015, 101 (1): 131-141. |
[10] | 杨师宇, 吴静萍, 汪敏, 等. 基于去奇异边界元法的二维数值波浪水池计算参数影响分析[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45 (5): 912-918. |
YANG Shiyu, WU Jingping, WANG Min, et al. Influence analysis of calculation parameters in two-dimensional numerical wave tank based on Dbiem[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2021, 45 (5): 912-918. | |
[11] | 吴明, 应荣熔, 蔡烽, 等. 不规则波数值模拟精度影响因素分析[J]. 舰船科学技术, 2020, 42 (9): 75-81. |
WU Ming, YING Rongrong, CAI Feng, et al. Analysis of factors affecting the accuracy of irregular wave numerical simulation[J]. Ship Science and Technology, 2020, 42 (9): 75-81. | |
[12] | SCOLAN Y M. Some aspects of the flip-through phenomenon: A numerical study based on the desingularized technique[J]. Journal of Fluids and Structures, 2010, 26 (6): 918-953. |
[13] | RYE H. Ocean wave groups[R]. Trondheim, Norway: Department of Marine Technology, University of Trondheim, 1982. |
[14] | GODA Y. On wave groups[C]// Proceeding of the Behaviour of Offshore Structures Conference. Trondheim, Norway: Norwegian Institute of Technology, 1976, 1: 115-128. |
[15] | FUNKE E R, MANSARD E. On the synthesis of realistic sea states in a laboratory flume[J]. Report, NRC of Canada, 1979, 66: 2974-2991. |
[16] | XU D, HOU W, ZHAO M, et al. The statistical simulation of wave groups[J]. Applied Ocean Research, 1993, 15: 217-226. |
[17] | 刘思. 多向不规则波群的模拟研究[D]. 大连: 大连理工大学, 2012. |
LIU Si. Simulation study of multi-directional irregular wave groups[D]. Dalian: Dalian University of Technology, 2012. | |
[18] | 王文杰. 基于高阶造波理论的单向不规则波群RANS模拟研究[D]. 武汉: 武汉理工大学, 2022. |
WANG Wenjie. Research on RANS simulation of unidirectional irregular wave groups based on higher-order wave theory[D]. Wuhan: Wuhan University of Technology, 2022. | |
[19] | 宁德志. 快速多极子边界元方法在完全非线性水波问题中的应用[D]. 大连: 大连理工大学, 2005. |
NING Dezhi. The application of fast multipole boundary element method in completely nonlinear water wave problems[D]. Dalian: Dalian University of Technology, 2005. | |
[20] | GODA Y. Random seas and design of maritime structures[M]. London,UK: World Scientific Publishing Company, 2010. |
[21] | CAO Y, SCHULTZ W W, BECK R F. Three-dimensional desingularized boundary integral methods for potential problems[J]. International Journal for Numerical Methods in Fluids, 1991, 12 (8): 785-803. |
[22] | 俞聿修. 随机波浪及其工程应用[M]. 大连: 大连理工大学出版社, 1999. |
YU Yuxiu. Random waves and their engineering applications[M]. Dalian: Dalian University of Technology Press, 1999. | |
[23] | 刘思, 柳淑学, 李金宣, 等. 单向不规则波群的实验室模拟和分析[J]. 水道港口, 2011, 32 (5): 305-312. |
LIU Si, LIU Shuxue, LI Jinxuan, et al. Laboratory simulation and analysis of unidirectional irregular wave groups[J]. Waterway Port, 2011, 32 (5): 305-312. |
[1] | 张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140. |
[2] | 丁伟伟,邹早建,吴静萍. 固定于水面的多个半圆形结构物的水波Bragg反射[J]. 上海交通大学学报, 2019, 53(9): 1023-1029. |
[3] | 徐刚,陈静,王树齐,刘永涛,朱仁庆. 无奇异边界元法精度分析[J]. 上海交通大学学报(自然版), 2018, 52(7): 867-872. |
[4] | 杨云涛,朱仁传,蒋银,缪国平. 三维无反射数值波浪水池及波浪与结构物相互作用的模拟[J]. 上海交通大学学报(自然版), 2018, 52(3): 253-260. |
[5] | 胡彬彬a,欧阳华a,吴亚东b,杜朝辉a. 偶极子噪声在均匀流管道中传播的声学模型[J]. 上海交通大学学报(自然版), 2013, 47(05): 692-696. |
[6] | 方昭昭1, 2, 朱仁传1, 缪国平1, 龚丞1. 数值波浪水池中航行船舶绕射问题的数值模拟[J]. 上海交通大学学报(自然版), 2012, 46(08): 1203-1209. |
[7] | 梁修锋,杨建民,李俊,李欣. 自由运动船体迎浪状态下上浪问题的数值模拟[J]. 上海交通大学学报(自然版), 2010, 44(06): 763-0768. |
[8] | 崔树标,张云,周华民,李德群. 边界元矩阵稀疏化算法及其应用[J]. 上海交通大学学报(自然版), 2008, 42(10): 1618-1621. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1685
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||