上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 1041-1049.doi: 10.16183/j.cnki.jsjtu.2023.431
收稿日期:2023-08-31
修回日期:2023-11-19
接受日期:2023-12-08
出版日期:2025-07-28
发布日期:2025-07-22
通讯作者:
苏焱
E-mail:suyan23@mail.sysu.edu.cn
作者简介:刘 涵(2001—),硕士生,从事船舶运动研究.
基金资助:
LIU Han, SU Yan(
), ZHANG Guoqiang
Received:2023-08-31
Revised:2023-11-19
Accepted:2023-12-08
Online:2025-07-28
Published:2025-07-22
Contact:
SU Yan
E-mail:suyan23@mail.sysu.edu.cn
摘要:
基于ANSYS-AQWA求解破损舰船DTMB5415在多个工况下的横摇运动响应,通过与文献结果对比验证数值模型的有效性,并基于数值结果构建破损船舶横摇运动响应数据库;采用支持向量回归算法对横摇运动数据库进行辨识建模,探究工况要素与横摇运动方程系数之间的关系,构建横摇运动响应快速预报模型并进行验证.该方法相较于传统计算流体力学模型,预报效率显著提高.
中图分类号:
刘涵, 苏焱, 张国强. 基于支持向量回归的破损船舶横摇运动快速预报[J]. 上海交通大学学报, 2025, 59(7): 1041-1049.
LIU Han, SU Yan, ZHANG Guoqiang. Fast Prediction for Roll Motion of a Damaged Ship Based on SVR[J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 1041-1049.
表2
部分工况下数据集超参数选取
| 组别 | 工况 | 超参数 | |||||
|---|---|---|---|---|---|---|---|
| H/m | T/s | β/rad | BoxConstraint | KernelScale | Epsilon | ||
| 1 | 1 | 7 | 0 | 957.411 1 | 39.963 6 | 0.000 5 | |
| 2 | 1 | 8 | 0 | 80.412 5 | 3.440 8 | 0.003 5 | |
| 3 | 1 | 9 | π/4 | 391.721 7 | 31.774 4 | 0.003 2 | |
| 4 | 1 | 10 | π/4 | 863.240 9 | 560.921 6 | 0.001 3 | |
| 5 | 1 | 9 | π/2 | 692.254 4 | 16.115 8 | 0.000 9 | |
| 6 | 1.5 | 6 | π/4 | 998.172 2 | 78.043 7 | 0.006 9 | |
| 7 | 1.5 | 9 | π | 593.945 7 | 51.515 5 | 0.000 4 | |
| 8 | 1.5 | 10 | π | 876.905 7 | 850.494 3 | 0.055 9 | |
表3
部分工况下横摇运动方程系数值的辨识结果
| 组别 | 工况 | 辨识建模结果 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| H/m | T/s | β/rad | d1 | d3 | r1 | r3 | f41 | f42 | ||
| 1 | 1 | 7 | 0 | 0.099 9 | 0.003 1 | 0.056 9 | 0.007 6 | -0.159 1 | 0.283 3 | |
| 2 | 1 | 8 | 0 | 0.099 4 | 0.001 9 | 0.066 2 | -0.001 3 | -0.352 3 | 0.128 8 | |
| 3 | 1 | 9 | π/4 | 0.118 5 | 0.000 0 | 0.067 2 | 0.000 0 | -0.634 8 | 0.719 7 | |
| 4 | 1 | 10 | π/4 | 0.071 6 | 0.000 0 | 0.061 6 | 0.000 0 | -0.572 1 | 1.192 8 | |
| 5 | 1 | 9 | π/2 | 0.021 2 | 0.000 0 | 0.042 0 | 0.001 4 | 1.279 9 | 1.522 9 | |
| 6 | 1.5 | 6 | π/4 | 0.404 3 | -0.003 2 | 0.105 8 | -0.000 8 | -0.202 9 | 1.428 4 | |
| 7 | 1.5 | 9 | π | 0.076 7 | 0.000 1 | 0.063 4 | 0.000 0 | -0.473 7 | -0.405 6 | |
| 8 | 1.5 | 10 | π | 0.074 1 | 0.000 0 | 0.056 5 | 0.000 0 | -0.821 0 | -0.590 9 | |
| [1] | XU S, GAO Z, XUE W. CFD database method for roll response of damaged ship during quasi-steady flooding in beam waves[J]. Applied Ocean Research, 2022, 126: 103282. |
| [2] |
欧珊, 毛筱菲, 刘祖源, 等. 基于OpenFOAM的破损船舶横摇阻尼[J]. 上海交通大学学报, 2019, 53(3): 305-314.
doi: 10.16183/j.cnki.jsjtu.2019.03.007 |
| OU Shan, MAO Xiaofei, LIU Zuyuan, et al. Roll damping of damaged ship based on OpenFOAM[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 305-314. | |
| [3] | The Stability in Waves Committee. Final report and recommendations to the 28th ITTC[C]// Proceedings of the 28th ITTC. Wuxi, China: International Towing Tank Conference, 2017(III):275-335. |
| [4] | The Specialist Committee on Stability in Waves. Final report and recommendations to the 25th ITTC[C]// Proceedings of the 25th ITTC. Fukuoka, Japan: International Towing Tank Conference, 2008(II):605-639. |
| [5] | ACANFORA M, BEGOVIC E, DE LUCA F. A fast simulation method for damaged ship dynamics[J]. Journal of Marine Science and Engineering, 2019, 7(4): 111-119. |
| [6] | MENG Y, ZHANG X, ZHU J. Parameter identification of ship motion mathematical model based on full-scale trial data[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100437. |
| [7] | CHEN H, LI Q, WANG Z. Improved maximum likelihood method for ship parameter identification[C]// 2018 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 1614-1621. |
| [8] | ZHENG J, YAN M, LI Y, et al. An online identification approach for a nonlinear ship motion model based on a receding horizon[J]. Transactions of the Institute of Measurement and Control, 2021, 43(13): 3000-3012. |
| [9] | 徐锋, 邹早建, 宋鑫. 基于支持向量机的水下运载器平面操纵运动建模[J]. 上海交通大学学报, 2012, 46(3): 358-362. |
| XU Feng, ZOU Zaojian, SONG Xin. Modeling of underwater vehicles’ planar maneuvering motion based on support vector machines[J]. Journal of Shanghai Jiao Tong University, 2012, 46(3): 358-362. | |
| [10] | 张心光. 基于支持向量回归机的船舶操纵运动在线辨识建模[J]. 船舶工程, 2019, 41(3): 98-101. |
| ZHANG Xinguang. Online identification modeling of ship manoeuvring motion using support vector regression[J]. Ship Engineering, 2019, 41(3): 98-101. | |
| [11] | WANG Z, XU H, XIA L, et al. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion[J]. Ocean Engineering, 2020, 216: 107994. |
| [12] | ZHU M, WEN Y, SUN W, et al. A novel adaptive weighted least square support vector regression algorithm-based identification of the ship dynamic model[J]. IEEE Access, 2019, 7: 128910-128924. |
| [13] | BEGOVIC E, DAY A H, INCECIK A. An experimental study of hull girder loads on an intact and damaged naval ship[J]. Ocean Engineering, 2017, 133: 47-65. |
| [14] | 黄柏刚, 邹早建. 基于固定网格小波神经网络的不规则波中船舶横摇运动在线预报[J]. 船舶力学, 2020, 24(6): 693-705. |
| HUANG Baigang, ZOU Zaojian. Online prediction of ship roll motion in irregular waves using a fixed grid wavelet network[J]. Journal of Ship Mechanics, 2020, 24(6): 693-705. | |
| [15] | 沈文君, 赵志娟, 刘利琴, 等. 波浪周期对小型船舶动力响应的影响研究[J]. 船舶力学, 2022, 26(3): 342-352. |
| SHEN Wenjun, ZHAO Zhijuan, LIU Liqin, et al. Research of wave period effect on the dynamic response characteristics of a small ship[J]. Journal of Ship Mechanics, 2022, 26(3): 342-352. | |
| [16] | HAN H, WANG W. A hybrid BPNN-GARF-SVR prediction model based on EEMD for ship motion[J]. CMES-Computer Modeling in Engineering & Sciences, 2023, 134(2): 1353-1370. |
| [1] | 钟一鸣1, 于曹阳1, 2, 向先波2, 3, 连琏1, 4. 基于级联滤波与误差触发支持向量回归的海洋航行器运动预测研究[J]. 海洋工程装备与技术, 2025, 12(1): 133-140. |
| [2] | 刘玉川1,李浩1,唐宇龙1,梁杜娟2,谭佳3,符玥1,李勇明4. 基于互信息-支持向量回归的阿尔兹海默症磁共振影像脑年龄检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135. |
| [3] | 李芬, 孙凌, 王亚维, 屈爱芳, 梅念, 赵晋斌. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6): 806-818. |
| [4] | 张博, 李克庆, 胡亚飞, 吉坤, 韩斌. 基于灰狼优化算法改进支持向量回归的充填体强度预测研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 686-694. |
| [5] | 刘钇汛, 刘志浩, 高钦和, 黄通, 马栋. 基于周向应变分析的重载轮胎垂向力估计算法[J]. 上海交通大学学报, 2023, 57(10): 1273-1281. |
| [6] | 朱城昊, 王晗, 孙国歧, 魏晓宾, 王富文, 蔡旭. 一种并网逆变器直流电容容值辨识方法[J]. 上海交通大学学报, 2022, 56(6): 693-700. |
| [7] | 徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421. |
| [8] | 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352. |
| [9] | 王会峰, 黄福祥, 蒋 扬, 阴炳钢, 田立锋, 李隶辉. 半潜平台湿拖作业时横摇水动力特性数值研究 [J]. 海洋工程装备与技术, 2022, 9(2): 29-37. |
| [10] | 王宏健,徐金龙,刘向波,李娟,张爱华. 基于支持向量回归机的自适应差分滤波算法研究[J]. 上海交通大学学报(自然版), 2014, 48(07): 929-935. |
| [11] | 王晓龙,蔡琦,陈玉清. 基于多参数耦合的船舶核动力装置参数重构[J]. 上海交通大学学报(自然版), 2014, 48(02): 210-213. |
| [12] | 刘长卿, 车驰东, 朱瑞仪. 城市交通高架轨道振动衰减的快速预报[J]. 上海交通大学学报(自然版), 2013, 47(02): 242-247. |
| [13] | 胡友涛, 胡昌华. 一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1216-1220. |
| [14] | 张宏伟, 宋执环. 基于彩色图像特征的铜成分软测量模型[J]. 上海交通大学学报(自然版), 2011, 45(08): 1211-1215. |
| [15] | 任会峰, 阳春华, 周璇, 桂卫华, 鄢锋. 基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量[J]. 上海交通大学学报(自然版), 2011, 45(08): 1136-1139. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||