上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 1041-1049.doi: 10.16183/j.cnki.jsjtu.2023.431

• 船舶海洋与建筑工程 • 上一篇    下一篇

基于支持向量回归的破损船舶横摇运动快速预报

刘涵, 苏焱(), 张国强   

  1. 中山大学 海洋工程与技术学院,广东 珠海 519000
  • 收稿日期:2023-08-31 修回日期:2023-11-19 接受日期:2023-12-08 出版日期:2025-07-28 发布日期:2025-07-22
  • 通讯作者: 苏焱 E-mail:suyan23@mail.sysu.edu.cn
  • 作者简介:刘 涵(2001—),硕士生,从事船舶运动研究.
  • 基金资助:
    国家重点研发计划(2021YFC2800700)

Fast Prediction for Roll Motion of a Damaged Ship Based on SVR

LIU Han, SU Yan(), ZHANG Guoqiang   

  1. School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
  • Received:2023-08-31 Revised:2023-11-19 Accepted:2023-12-08 Online:2025-07-28 Published:2025-07-22
  • Contact: SU Yan E-mail:suyan23@mail.sysu.edu.cn

摘要:

基于ANSYS-AQWA求解破损舰船DTMB5415在多个工况下的横摇运动响应,通过与文献结果对比验证数值模型的有效性,并基于数值结果构建破损船舶横摇运动响应数据库;采用支持向量回归算法对横摇运动数据库进行辨识建模,探究工况要素与横摇运动方程系数之间的关系,构建横摇运动响应快速预报模型并进行验证.该方法相较于传统计算流体力学模型,预报效率显著提高.

关键词: 快速预报, 支持向量回归, 破损船舶, 横摇运动

Abstract:

ANSYS-AQWA is applied to analyze the rolling motion response of the damaged ship DTMB5415 under various working conditions. The results are compared with those in exiting literature to validate the practicality of the hydrodynamic model. Additionly, the rolling motion response database for the damaged ship is constructed. The support vector regression (SVR) algorithm is used to model the rolling motion database for identification, exploring the relationship between the operating condition factors and coefficients in the equation of roll motion. Finally, a fast prediction model for rolling motion is constructed and validated, offering a significant improvement in the prediction efficiency compared with traditional computational fluid dynamics models.

Key words: fast prediction, support vector regression (SVR), damaged ship, rolling motion

中图分类号: