上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (3): 342-352.doi: 10.16183/j.cnki.jsjtu.2021.027
所属专题: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
收稿日期:
2021-01-25
出版日期:
2022-03-28
发布日期:
2022-04-01
通讯作者:
陈自强
E-mail:chenziqiang@sjtu.edu.cn
作者简介:
卢地华(1995-),男,江西省九江市人,硕士生,主要从事锂离子电池健康状态估计研究.
基金资助:
Received:
2021-01-25
Online:
2022-03-28
Published:
2022-04-01
Contact:
CHEN Ziqiang
E-mail:chenziqiang@sjtu.edu.cn
摘要:
针对锂离子电池实际应用中存在不完全充放电而导致的充电起始点及截止点不确定问题,提出一种基于双充电状态因子的电池健康状态估计方法.搭建电池老化实验台架,采用8块镍钴锰锂离子电池进行老化实验;区别于传统单状态因子估计,选取不同老化阶段下恒压充电状态前端等时间差的电流平均值,以及恒流充电状态末端等幅值电压的充电时间构造健康因子;分析不同老化阶段实验电池的荷电状态-开路电压对应关系,通过理论推导及实验结果证明健康因子的正确性;建立具备强泛化能力的改进支持向量回归模型,并通过粒子群算法优化模型超参数.实验结果表明:所提双充电状态健康因子与电池老化衰减密切相关,所建立的改进支持向量回归模型可实时估计不同老化状态下的电池健康状态,具备容量局部回弹变化的表征能力,可作为一种有效的嵌入式电池管理系统健康状态估计方法.
中图分类号:
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352.
[1] | 周诗尧, 陈自强, 黄德扬, 等. 轻度混合动力船舶储能系统研究[J]. 装备环境工程, 2018, 15(12):55-59. |
ZHOU Shiyao, CHEN Ziqiang, HUANG Deyang, et al. Energy storage system of mild hybrid ship[J]. Equipment Environmental Engineering, 2018, 15(12):55-59. | |
[2] |
CHENG Y J, LU C, LI T Y, et al. Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach[J]. Energy, 2015, 90:1983-1993.
doi: 10.1016/j.energy.2015.07.022 URL |
[3] |
REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources, 2011, 196(12):5357-5363.
doi: 10.1016/j.jpowsour.2010.08.035 URL |
[4] | 刘江波. 基于内阻检测的锂电池健康状态估计研究[D]. 武汉: 武汉理工大学, 2015. |
LIU Jiangbo. Research on SOH estimation of Li-ion battery based on internal resistance[D]. Wuhan: Wuhan University of Technology, 2015. | |
[5] |
LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(6):915-928.
doi: 10.1109/TSMC.2015.2389757 URL |
[6] |
ZHOU Y P, HUANG M H, CHEN Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321:1-10.
doi: 10.1016/j.jpowsour.2016.04.119 URL |
[7] | HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2645-2656. |
[8] |
LI J F, WANG L X, LYU C, et al. A method of remaining capacity estimation for lithium-ion battery[J]. Advances in Mechanical Engineering, 2013, 5:154831.
doi: 10.1155/2013/154831 URL |
[9] | 孙培坤. 电动汽车动力电池健康状态估计方法研究[D]. 北京: 北京理工大学, 2016. |
SUN Peikun. Research of state of health estimation method for electric vehicle lithium-ion power battery[D]. Beijing: Beijing Institute of Technology, 2016. | |
[10] | 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19):3968-3978. |
GUO Yongfang, HUANG Kai, LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19):3968-3978. | |
[11] | 潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12):1375-1381. |
PAN Haihong, LÜ Zhiqiang, FU Bing, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12):1375-1381. | |
[12] |
MENG J H, CAI L, STROE D I, et al. Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles[J]. Energy, 2019, 185:1054-1062.
doi: 10.1016/j.energy.2019.07.127 URL |
[13] |
BIAN X L, LIU L C, YAN J Y. A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy, 2019, 177:57-65.
doi: 10.1016/j.energy.2019.04.070 URL |
[14] |
WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235:36-44.
doi: 10.1016/j.jpowsour.2013.02.012 URL |
[15] | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9):1058-1065. |
LIU Jian, CHEN Ziqiang, HUANG Deyang, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9):1058-1065. | |
[16] |
YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212:1589-1600.
doi: 10.1016/j.apenergy.2018.01.010 URL |
[17] |
HUANG D Y, CHEN Z Q, ZHENG C W, et al. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185:847-861.
doi: 10.1016/j.energy.2019.07.063 URL |
[18] |
刘轶鑫, 张頔, 李雪, 等. 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41(10):1158-1163.
doi: 10.19562/j.chinasae.qcgc.2019.010.008 |
LIU Yixin, ZHANG Di, LI Xue, et al. A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41(10):1158-1163. | |
[19] |
WANG Z K, ZENG S K, GUO J B, et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167:661-669.
doi: 10.1016/j.energy.2018.11.008 URL |
[20] |
LI X Y, WANG Z P, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411:106-114.
doi: 10.1016/j.jpowsour.2018.10.069 URL |
[1] | 朱城昊, 王晗, 孙国歧, 魏晓宾, 王富文, 蔡旭. 一种并网逆变器直流电容容值辨识方法[J]. 上海交通大学学报, 2022, 56(6): 693-700. |
[2] | 徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421. |
[3] | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
[4] | 刘健,陈自强,黄德扬,郑昌文,周诗尧,姜余. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065. |
[5] | 周诗尧, 陈自强, 郑昌文, 黄德扬, 刘健, 葛云龙. 全海深深潜器所用动力锂离子电池电气特性[J]. 上海交通大学学报, 2019, 53(1): 49-54. |
[6] | 王宏健,徐金龙,刘向波,李娟,张爱华. 基于支持向量回归机的自适应差分滤波算法研究[J]. 上海交通大学学报(自然版), 2014, 48(07): 929-935. |
[7] | 王晓龙,蔡琦,陈玉清. 基于多参数耦合的船舶核动力装置参数重构[J]. 上海交通大学学报(自然版), 2014, 48(02): 210-213. |
[8] | 任会峰, 阳春华, 周璇, 桂卫华, 鄢锋. 基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量[J]. 上海交通大学学报(自然版), 2011, 45(08): 1136-1139. |
[9] | 张宏伟, 宋执环. 基于彩色图像特征的铜成分软测量模型[J]. 上海交通大学学报(自然版), 2011, 45(08): 1211-1215. |
[10] | 胡友涛, 胡昌华. 一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1216-1220. |
[11] | 张心光, 邹早建. 基于支持向量回归机的船舶操纵响应模型辨识[J]. 上海交通大学学报(自然版), 2011, 45(04): 501-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||