上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 295-303.doi: 10.16183/j.cnki.jsjtu.2022.091
陈昊蓝1, 靳冰莹1, 刘亚东1, 钱庆林2, 王鹏3, 陈艳霞3, 于希娟3, 严英杰1()
收稿日期:
2022-03-31
修回日期:
2022-07-13
接受日期:
2022-08-16
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
严英杰,讲师;E-mail:作者简介:
陈昊蓝(2001-),本科生,主要从事配电网早期故障识别方法研究.
基金资助:
CHEN Haolan1, JIN Bingying1, LIU Yadong1, QIAN Qinglin2, WANG Peng3, CHEN Yanxia3, YU Xijuan3, YAN Yingjie1()
Received:
2022-03-31
Revised:
2022-07-13
Accepted:
2022-08-16
Online:
2024-03-28
Published:
2024-03-28
摘要:
为了提高小样本条件下配电网故障辨识准确率,提出一种门控循环注意力网络模型.首先,通过注意力机制赋予故障相中关键周期较高权重,通过加权运算使得模型更加关注上述关键信息.其次,利用门控循环网络处理波形序列,该网络利用门控信号控制记忆传递过程,并借由记忆传递建立序列中不同阶段输入波形和故障类别概率间的关系,从而提升识别准确率.基于仿真数据和实际数据的实验均表明:所提方法在小样本条件下的可靠性和准确率远优于同等条件下支持向量机、梯度提升决策树、卷积神经网络等常用分类模型,为配电网故障辨识技术提供了一种新思路.
中图分类号:
陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303.
CHEN Haolan, JIN Bingying, LIU Yadong, QIAN Qinglin, WANG Peng, CHEN Yanxia, YU Xijuan, YAN Yingjie. Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 295-303.
表1
不同模型F1分数对比
模型 | 仿真类别 | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||||
GRU | 0.902 | 0.941 | 0.887 | 0.910 | |||||
SVM | 0.810 | 0.841 | 0.815 | 0.822 | |||||
GBDT | 0.832 | 0.869 | 0.844 | 0.848 | |||||
CNN | 0.871 | 0.890 | 0.867 | 0.876 | |||||
模型 | 实验类别 | 平均值 | |||||||
1 | 2 | 3 | 4 | ||||||
GRU | 0.862 | 0.871 | 0.854 | 0.831 | 0.855 | ||||
SVM | 0.720 | 0.704 | 0.731 | 0.719 | 0.719 | ||||
GBDT | 0.762 | 0.774 | 0.785 | 0.747 | 0.767 | ||||
CNN | 0.790 | 0.807 | 0.820 | 0.787 | 0.801 |
[1] | 张丽虹, 常成, 熊炜, 等. 基于智能控制终端的主动配电网故障处理方法[J]. 电力科学与技术学报, 2020(2): 22-29. |
ZHANG Lihong, CHANG Cheng, XIONG Wei, et al. Research on fault processing of active power distribution network based on intelligent control terminal[J]. Journal of Electric Power Science & Technology, 2020(2): 22-29. | |
[2] |
陈国炎, 李俊均, 陈颖, 等. 数据驱动的配电开关设备交互式诊断平台[J]. 电工电能新技术, 2019, 38(3): 10-17.
doi: 10.12067/ATEEE1810004 |
CHEN Guoyan, LI Junjun, CHEN Ying, et al. Data-driven and interactive fault diagnosis of distribution switches[J]. Advanced Technology of Electrical Engineering & Energy, 2019, 38(3): 10-17. | |
[3] | 江秀臣, 刘亚东, 傅晓飞, 等. 输配电设备泛在电力物联网建设思路与发展趋势[J]. 高电压技术, 2019, 45(5): 1345-1351. |
JIANG Xiuchen, LIU Yadong, FU Xiaofei, et al. Construction ideas and development trends of transmission and distribution equipment of the ubiquitous power internet of things[J]. High Voltage Engineering, 2019, 45(5): 1345-1351. | |
[4] | 熊思衡, 刘亚东, 方健, 等. 配电线路早期故障辨识方法[J]. 高电压技术, 2020, 46(11): 259-265. |
XIONG Siheng, LIU Yadong, FANG Jian, et al. Detection method of incipient faults of power distribution lines[J]. High Voltage Engineering, 2020, 46(11): 259-265. | |
[5] |
SIDHU T S, XU Z. Detection of incipient faults in distribution under-ground cables[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1363-1371.
doi: 10.1109/TPWRD.2010.2041373 URL |
[6] | 李泽文, 刘基典, 席燕辉, 等. 基于暂态波形相关性的配电网故障定位方法[J]. 电力系统自动化, 2020(21): 72-79. |
LI Zewen, LIU Jidian, XI Yanhui, et al. Fault location method for distribution network based on transient waveform correlation[J]. Automation of Electric Power Systems. 2020, 44(21): 72-79. | |
[7] |
IZADI M, MOHSENIAN-RAD H. Synchronous waveform measurements to locate transient events and incipient faults in power distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4295-4307.
doi: 10.1109/TSG.2021.3081017 URL |
[8] |
ZHANG W, JING Y, XIAO X. Model-based general arcing fault detection in medium-voltage distribution lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2231-2241.
doi: 10.1109/TPWRD.2016.2518738 URL |
[9] | 蒋碧莺, 荣建, 张军. Logistic分类算法下的配电网故障识别技术研究[J]. 电工技术, 2018, 486(24): 70-71. |
JIANG Biying, RONG Jian, ZHANG Jun. Research on fault identification technology of distribution network based on Logistic classification[J]. Electric Engineering, 2018, 486(24): 70-71. | |
[10] | 郭谋发, 游林旭, 洪翠, 等. 基于LCD-Hilbert谱奇异值和多级支持向量机的配电网故障识别方法[J]. 高电压技术, 2017(4): 1239-1247. |
GUO Moufa, YOU Linxu, HONG Cui, et al. Identification method of distribution network faults based on singular value of LCD-Hilbert spectrums and multilevel SVM[J]. High Voltage Engineering, 2017(4): 1239-1247. | |
[11] | 赵智, 王艳松, 鲍兵, 等. 基于小波神经网络的配电网故障类型识别[J]. 电力系统及其自动化学报, 2007, 19(6): 93-96. |
ZHAO Zhi, WANG Yansong, BAO Bing, et al. Fault type identification in distribution network based on wavelet neural network[J]. Proceedings of The CSU-EPSA, 2007, 19(6): 93-96. | |
[12] |
武光利, 郭振洲, 李雷霆, 等. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614.
doi: 10.16183/j.cnki.jsjtu.2020.120 |
WU Guangli, GUO Zhenzhou, LI Leiting, et al. Video abnormal detection combining FCN with LSTM[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614. | |
[13] |
刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190.
doi: 10.16183/j.cnki.jsjtu.2021.001 |
LIU Xiuli, XU Xiaoli. A fault diagnosis method based on feature pyramid CRNN network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. | |
[14] |
张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535.
doi: 10.16183/j.cnki.jsjtu.2020.095 |
ZHANG Songlin, MA Dongliang, WANG Deyu. Method for plate crack damage detection based on long short-term memory neural network[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 527-535.
doi: 10.16183/j.cnki.jsjtu.2020.095 |
|
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 6000-6010. |
[16] |
XIONG S H, LIU Y D, FANG J, et al. Incipient fault identification in power distribution systems via human-level concept learning[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5239-5248.
doi: 10.1109/TSG.5165411 URL |
[17] | GRAVES A, LIWICKI M, FERNÁNDEZ S, et al. A novel connectionist system for unconstrained handwriting recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(5): 855-868. |
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[19] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014-09-03) [2022-03-30]. https://arxiv.org/abs/1406.1078. |
[20] | KULKARNI S, ALLEN A J, CHOPRA S, et al. Waveform characteristics of underground cable failures[C]// IEEE PES General Meeting. Minneapolis, USA. IEEE, 2010: 1-8. |
[21] |
JANNATI M, VAHIDI B, HOSSEINIAN S H. Incipient faults monitoring in underground medium voltage cables of distribution systems based on a two-step strategy[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1647-1655.
doi: 10.1109/TPWRD.61 URL |
[22] | 谢潇磊, 刘亚东, 孙鹏, 等. 新型配电网线路PMU装置的研制[J]. 电力系统自动化, 2016, 40(12): 15-20. |
XIE Xiaolei, LIU Yadong, SUN Peng, et al. Development of novel PMU device for distribution network lines[J]. Automation of Electric Power Systems, 2016, 40(12): 15-20. | |
[23] | SASAKI Y. The truth of the f-measure[D]. Manchester: University of Manchester, 2007. |
[24] | KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 3149-3157. |
[25] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 URL |
[26] | CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-27. |
[27] | CHEN T Q, HE T. Xgboost: Extreme gradient boosting[EB/OL]. (2023-03-31)[2023-08-23]. http://mysql.orst.edu/pub/cran/web/packages/xgboost/vignettes/xgboost.pdf. |
[1] | 全少理, 于昊正, 马杰, 王炜宇, 郭勇, 陈春. 交/直流混合配网多逆变器分布式协同抗扰控制[J]. 上海交通大学学报, 2025, 59(5): 605-616. |
[2] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[3] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
[4] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[5] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[6] | 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47. |
[7] | 薛贵挺, 刘哲, 韩兆儒, 石访, 王倜, 王晓. 开关投切过程建模及其在配网故障诊断算法测试中的应用[J]. 上海交通大学学报, 2024, 58(9): 1381-1389. |
[8] | 米阳, 陈宇阳, 陈博洋, 韩云昊, 袁明瀚. 考虑微能网接入主动配电网的共享储能多目标配置[J]. 上海交通大学学报, 2024, 58(9): 1309-1322. |
[9] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[10] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[11] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[12] | 刘舒, 周敏, 高元海, 徐潇源, 严正. 融合拓扑信息的配电网电压-功率灵敏度估计数据驱动方法[J]. 上海交通大学学报, 2024, 58(6): 855-862. |
[13] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[14] | 张春梅, 许兴雀, 刘思麟. 基于多源数据融合的配电网故障诊断技术[J]. 上海交通大学学报, 2024, 58(5): 739-746. |
[15] | 毕忠勤, 余晓婉, 王宝楠, 黄文焘, 张丹, 董真. 基于量子蚁群算法的配电网故障区段快速定位技术[J]. 上海交通大学学报, 2024, 58(5): 693-708. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 3079
|
|
|||||||||||||||||||||||||||||||||
摘要 513
|
|
|||||||||||||||||||||||||||||||||