上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 295-303.doi: 10.16183/j.cnki.jsjtu.2022.091
陈昊蓝1, 靳冰莹1, 刘亚东1, 钱庆林2, 王鹏3, 陈艳霞3, 于希娟3, 严英杰1()
收稿日期:
2022-03-31
修回日期:
2022-07-13
接受日期:
2022-08-16
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
严英杰,讲师;E-mail:作者简介:
陈昊蓝(2001-),本科生,主要从事配电网早期故障识别方法研究.
基金资助:
CHEN Haolan1, JIN Bingying1, LIU Yadong1, QIAN Qinglin2, WANG Peng3, CHEN Yanxia3, YU Xijuan3, YAN Yingjie1()
Received:
2022-03-31
Revised:
2022-07-13
Accepted:
2022-08-16
Online:
2024-03-28
Published:
2024-03-28
摘要:
为了提高小样本条件下配电网故障辨识准确率,提出一种门控循环注意力网络模型.首先,通过注意力机制赋予故障相中关键周期较高权重,通过加权运算使得模型更加关注上述关键信息.其次,利用门控循环网络处理波形序列,该网络利用门控信号控制记忆传递过程,并借由记忆传递建立序列中不同阶段输入波形和故障类别概率间的关系,从而提升识别准确率.基于仿真数据和实际数据的实验均表明:所提方法在小样本条件下的可靠性和准确率远优于同等条件下支持向量机、梯度提升决策树、卷积神经网络等常用分类模型,为配电网故障辨识技术提供了一种新思路.
中图分类号:
陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303.
CHEN Haolan, JIN Bingying, LIU Yadong, QIAN Qinglin, WANG Peng, CHEN Yanxia, YU Xijuan, YAN Yingjie. Fault Detection in Power Distribution Systems Based on Gated Recurrent Attention Network[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 295-303.
表1
不同模型F1分数对比
模型 | 仿真类别 | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||||
GRU | 0.902 | 0.941 | 0.887 | 0.910 | |||||
SVM | 0.810 | 0.841 | 0.815 | 0.822 | |||||
GBDT | 0.832 | 0.869 | 0.844 | 0.848 | |||||
CNN | 0.871 | 0.890 | 0.867 | 0.876 | |||||
模型 | 实验类别 | 平均值 | |||||||
1 | 2 | 3 | 4 | ||||||
GRU | 0.862 | 0.871 | 0.854 | 0.831 | 0.855 | ||||
SVM | 0.720 | 0.704 | 0.731 | 0.719 | 0.719 | ||||
GBDT | 0.762 | 0.774 | 0.785 | 0.747 | 0.767 | ||||
CNN | 0.790 | 0.807 | 0.820 | 0.787 | 0.801 |
[1] | 张丽虹, 常成, 熊炜, 等. 基于智能控制终端的主动配电网故障处理方法[J]. 电力科学与技术学报, 2020(2): 22-29. |
ZHANG Lihong, CHANG Cheng, XIONG Wei, et al. Research on fault processing of active power distribution network based on intelligent control terminal[J]. Journal of Electric Power Science & Technology, 2020(2): 22-29. | |
[2] |
陈国炎, 李俊均, 陈颖, 等. 数据驱动的配电开关设备交互式诊断平台[J]. 电工电能新技术, 2019, 38(3): 10-17.
doi: 10.12067/ATEEE1810004 |
CHEN Guoyan, LI Junjun, CHEN Ying, et al. Data-driven and interactive fault diagnosis of distribution switches[J]. Advanced Technology of Electrical Engineering & Energy, 2019, 38(3): 10-17. | |
[3] | 江秀臣, 刘亚东, 傅晓飞, 等. 输配电设备泛在电力物联网建设思路与发展趋势[J]. 高电压技术, 2019, 45(5): 1345-1351. |
JIANG Xiuchen, LIU Yadong, FU Xiaofei, et al. Construction ideas and development trends of transmission and distribution equipment of the ubiquitous power internet of things[J]. High Voltage Engineering, 2019, 45(5): 1345-1351. | |
[4] | 熊思衡, 刘亚东, 方健, 等. 配电线路早期故障辨识方法[J]. 高电压技术, 2020, 46(11): 259-265. |
XIONG Siheng, LIU Yadong, FANG Jian, et al. Detection method of incipient faults of power distribution lines[J]. High Voltage Engineering, 2020, 46(11): 259-265. | |
[5] |
SIDHU T S, XU Z. Detection of incipient faults in distribution under-ground cables[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1363-1371.
doi: 10.1109/TPWRD.2010.2041373 URL |
[6] | 李泽文, 刘基典, 席燕辉, 等. 基于暂态波形相关性的配电网故障定位方法[J]. 电力系统自动化, 2020(21): 72-79. |
LI Zewen, LIU Jidian, XI Yanhui, et al. Fault location method for distribution network based on transient waveform correlation[J]. Automation of Electric Power Systems. 2020, 44(21): 72-79. | |
[7] |
IZADI M, MOHSENIAN-RAD H. Synchronous waveform measurements to locate transient events and incipient faults in power distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4295-4307.
doi: 10.1109/TSG.2021.3081017 URL |
[8] |
ZHANG W, JING Y, XIAO X. Model-based general arcing fault detection in medium-voltage distribution lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2231-2241.
doi: 10.1109/TPWRD.2016.2518738 URL |
[9] | 蒋碧莺, 荣建, 张军. Logistic分类算法下的配电网故障识别技术研究[J]. 电工技术, 2018, 486(24): 70-71. |
JIANG Biying, RONG Jian, ZHANG Jun. Research on fault identification technology of distribution network based on Logistic classification[J]. Electric Engineering, 2018, 486(24): 70-71. | |
[10] | 郭谋发, 游林旭, 洪翠, 等. 基于LCD-Hilbert谱奇异值和多级支持向量机的配电网故障识别方法[J]. 高电压技术, 2017(4): 1239-1247. |
GUO Moufa, YOU Linxu, HONG Cui, et al. Identification method of distribution network faults based on singular value of LCD-Hilbert spectrums and multilevel SVM[J]. High Voltage Engineering, 2017(4): 1239-1247. | |
[11] | 赵智, 王艳松, 鲍兵, 等. 基于小波神经网络的配电网故障类型识别[J]. 电力系统及其自动化学报, 2007, 19(6): 93-96. |
ZHAO Zhi, WANG Yansong, BAO Bing, et al. Fault type identification in distribution network based on wavelet neural network[J]. Proceedings of The CSU-EPSA, 2007, 19(6): 93-96. | |
[12] |
武光利, 郭振洲, 李雷霆, 等. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614.
doi: 10.16183/j.cnki.jsjtu.2020.120 |
WU Guangli, GUO Zhenzhou, LI Leiting, et al. Video abnormal detection combining FCN with LSTM[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614. | |
[13] |
刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190.
doi: 10.16183/j.cnki.jsjtu.2021.001 |
LIU Xiuli, XU Xiaoli. A fault diagnosis method based on feature pyramid CRNN network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. | |
[14] |
张松林, 马栋梁, 王德禹. 基于长短期记忆神经网络的板裂纹损伤检测方法[J]. 上海交通大学学报, 2021, 55(5): 527-535.
doi: 10.16183/j.cnki.jsjtu.2020.095 |
ZHANG Songlin, MA Dongliang, WANG Deyu. Method for plate crack damage detection based on long short-term memory neural network[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 527-535.
doi: 10.16183/j.cnki.jsjtu.2020.095 |
|
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 6000-6010. |
[16] |
XIONG S H, LIU Y D, FANG J, et al. Incipient fault identification in power distribution systems via human-level concept learning[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5239-5248.
doi: 10.1109/TSG.5165411 URL |
[17] | GRAVES A, LIWICKI M, FERNÁNDEZ S, et al. A novel connectionist system for unconstrained handwriting recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(5): 855-868. |
[18] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[19] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014-09-03) [2022-03-30]. https://arxiv.org/abs/1406.1078. |
[20] | KULKARNI S, ALLEN A J, CHOPRA S, et al. Waveform characteristics of underground cable failures[C]// IEEE PES General Meeting. Minneapolis, USA. IEEE, 2010: 1-8. |
[21] |
JANNATI M, VAHIDI B, HOSSEINIAN S H. Incipient faults monitoring in underground medium voltage cables of distribution systems based on a two-step strategy[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1647-1655.
doi: 10.1109/TPWRD.61 URL |
[22] | 谢潇磊, 刘亚东, 孙鹏, 等. 新型配电网线路PMU装置的研制[J]. 电力系统自动化, 2016, 40(12): 15-20. |
XIE Xiaolei, LIU Yadong, SUN Peng, et al. Development of novel PMU device for distribution network lines[J]. Automation of Electric Power Systems, 2016, 40(12): 15-20. | |
[23] | SASAKI Y. The truth of the f-measure[D]. Manchester: University of Manchester, 2007. |
[24] | KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 3149-3157. |
[25] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 URL |
[26] | CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-27. |
[27] | CHEN T Q, HE T. Xgboost: Extreme gradient boosting[EB/OL]. (2023-03-31)[2023-08-23]. http://mysql.orst.edu/pub/cran/web/packages/xgboost/vignettes/xgboost.pdf. |
[1] | 颜文婷, 杨隆, 李长城, 罗伟. 考虑地震攻击交通网影响的配电网韧性评估及提升策略[J]. 上海交通大学学报, 2023, 57(9): 1165-1175. |
[2] | 李俊双, 胡炎, 邰能灵. 计及通信负载与供电可靠性的5G基站储能与配电网协同优化调度[J]. 上海交通大学学报, 2023, 57(7): 791-802. |
[3] | 奚鑫泽, 邢超, 覃日升, 何廷一, 和鹏, 孟贤, 程春辉. 含双馈风力发电系统的配电网短路电流特性[J]. 上海交通大学学报, 2023, 57(7): 921-927. |
[4] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[5] | 张蓬, 吕恭祥, 刘志杰, 朱守真, 邵智勇. 含电能路由器的配电网转供灵活性量化分析[J]. 上海交通大学学报, 2023, 57(5): 513-520. |
[6] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[7] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[8] | 陈雨婷, 赵毅, 吴俊达, 孙文瑶, 夏世威. 考虑碳排放指标的配电网经济调度方法[J]. 上海交通大学学报, 2023, 57(4): 442-451. |
[9] | 王昊, 黄文焘, 邰能灵, 余墨多, 孙国亮. 直流配网多滤波器交互影响机理分析[J]. 上海交通大学学报, 2023, 57(4): 393-402. |
[10] | 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325. |
[11] | 曾博, 穆宏伟, 董厚琦, 曾鸣. 考虑5G基站低碳赋能的主动配电网优化运行[J]. 上海交通大学学报, 2022, 56(3): 279-292. |
[12] | 袁铭, 刘群, 孙海超, 谭洪胜. 基于变分推断和元路径分解的异质网络表示方法[J]. 上海交通大学学报, 2021, 55(5): 586-597. |
[13] | 蔡云泽, 张彦军. 基于双通道特征增强集成注意力网络的红外弱小目标检测方法[J]. 空天防御, 2021, 4(4): 14-22. |
[14] | 张靖宜, 贺光辉, 代洲, 刘亚东. 融入BERT的企业年报命名实体识别方法[J]. 上海交通大学学报, 2021, 55(2): 117-123. |
[15] | 杨博, 俞磊, 王俊婷, 束洪春, 曹璞璘, 余涛. 基于自适应蝠鲼觅食优化算法的分布式电源选址定容[J]. 上海交通大学学报, 2021, 55(12): 1673-1688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||