上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (1): 103-110.doi: 10.16183/j.cnki.jsjtu.2018.01.016

• 学报(中文) • 上一篇    下一篇

基于协同表示的声振传感器网络车辆分类识别

王瑞,刘宾,周天润,杨羽   

  1. 上海大学 通信与信息工程学院, 上海 200444
  • 出版日期:2018-01-01 发布日期:2018-01-01
  • 基金资助:
    国家自然科学基金项目(61771299,61301027)

Vehicle Recognition in Acoustic and Seismic Networks via Collaboration Representation

WANG Rui,LIU Bin,ZHOU Tianrun,YANG Yu   

  1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • Online:2018-01-01 Published:2018-01-01

摘要: 针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协同表示的重构误差并对其进行加权处理,得出被检测目标的分类识别结果.结果表明,所提出的车辆分类识别方法对于车辆目标具有较好的分类效果和较高的识别效率.

关键词: 车辆识别, 协同表示, 多任务分类, 特征提取, 重构误差

Abstract: Aiming at the defects of the current recognition methods using single signal, we propose a vehicle recognition method based on the collaboration representation of acoustical and vibrative signals. Firstly, Mel-frequency cepstral coefficients (MFCCs) are used to extract the acoustical and vibrative features of vehicles. Then, multitask training of classification is carried out separately by two kinds of signal features. Finally, the reconstruction error of multitask collaboration representation is obtained through the signal features and the target is classified according to the reconstruction error. Experiments indicate that this method has better classification effect and higher recognition efficiency, compared with the existing methods.

Key words: vehicle recognition, collaboration representation, multitask classification, feature extraction, reconstruction error

中图分类号: