[1]PHILLIPS G M. Bernstein polynomials based on the q-integers[J]. Annals of Numerical Mathematics, 1997, 4(1/2/3/4): 511-518.
[2]ORUC H, PHILLIPS G M. q-Bernstein polynomials and Bézier curves[J]. Journal of Computational and Applied Mathematics, 2003, 151(1): 1-12.
[3]GOLDMAN R, SIMEONOV P. Two essential properties of q-Bernstein-Bézier curves[J]. Applied Numerical Mathematics, 2015, 96: 82-93.
[4]OSTROVSKA S, OZBAN A Y. On the q-Bernstein polynomials of rational functions with real poles[J]. Journal of Mathematical Analysis and Applications, 2014, 413(2): 547-556.
[5]刘植, 吕雁燕, 刘晓雁, 等. 圆域q-Bézier曲线的降阶[J]. 计算机辅助设计与图形学学报, 2017, 29(5): 860-867.
LIU Zhi, L Yanyan, LIU Xiaoyan, et al. Degree reduction of disk q-Bézier curves[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29(5): 860-867.
[6]CHEN F L, LOU W P. Degree reduction of interval Bézier curves[J]. Computer-Aided Design, 2000, 32(10): 571-582.
[7]CHEN F L, YANG X F, YANG W. Degree reduction of interval B-spline curves[J]. Journal of Software, 2002, 13(4): 490-500.
[8]檀结庆, 江平. 区间Ball曲线的边界及降阶[J]. 计算机辅助设计与图形学学报, 2006, 18(3): 378-384.
TAN Jieqing, JIANG Ping. Boundary and degree reduction of interval Ball curves[J]. Journal of Computer-Aided Design and Computer Graphics, 2006, 18(3): 378-384.
[9]檀结庆, 方中海. 区间Wang-Said型广义Ball曲线的降阶[J]. 计算机辅助设计与图形学学报, 2008, 20(11): 1483-1493.
TAN Jieqing, FANG Zhonghai. Degree reduction of interval generalized Ball curves of Wang-Said type[J]. Journal of Computer-Aided Design and Computer Graphics, 2008, 20(11): 1483-1493.
[10]GOSPODARCZYK P. Degree reduction of Bézier curves with restricted control points area[J]. Computer-Aided Design, 2015, 62: 143-151.
[11]BHRAWY A H, DOHA E H, SAKER M A, et al. Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bézier curves[J]. Journal of Computational and Applied Mathematics, 2016, 302: 369-384. |