上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (8): 983-989.doi: 10.16183/j.cnki.jsjtu.2019.08.014
章云港,杨剑锋,易本顺
出版日期:
2019-08-28
发布日期:
2019-09-10
通讯作者:
杨剑锋,男,副教授,电话(Tel.): 027-68752280;E-mail: yjf@whu.edu.cn.
作者简介:
章云港(1994-),男,浙江省温州市人,硕士生,主要研究方向为深度学习与图像处理.
ZHANG Yungang,YANG Jianfeng,YI Benshun
Online:
2019-08-28
Published:
2019-09-10
摘要: 针对低剂量CT图像中存在复杂噪声与伪影的问题,提出了一种用于低剂量CT图像去噪的改进型残差编解码网络.原始的残差编解码网络由一系列卷积层与反卷积层组成,且通过短连接结构学习残差.改进措施主要包括3个方面:首先,引入了批量归一化提高网络的去噪效果;其次,使用空洞卷积替换普通卷积,从而有效减少了网络中参数的数量;最后,对网络隐层中的特征图数量进行了调整,进一步优化了网络性能与复杂度.实验结果表明:改进后的网络复杂度降低,去噪效果得到提升.
中图分类号:
章云港,杨剑锋,易本顺. 低剂量CT图像去噪的改进型残差编解码网络[J]. 上海交通大学学报, 2019, 53(8): 983-989.
ZHANG Yungang,YANG Jianfeng,YI Benshun. Improved Residual Encoder-Decoder Network for Low-Dose CT Image Denoising[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 983-989.
[1]李琳, 罗德红. 低剂量CT扫描技术的临床应用 [J]. 当代医学, 2009, 15(20): 146-149. LI Lin, LUO Dehong. The clinical application of low-dose CT scanning [J]. Contemporary Medicine, 2009, 15(20): 146-149. [2]MORI I, MACHIDA Y, OSANAI M, et al. Photon starvation artifacts of X-ray CT: Their true cause and a solution [J]. Radiological Physics & Technology, 2013, 6(1): 130-141. [3]MANDUCA A, YU L F, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT [J]. Medical Physics, 2009, 36(11): 4911-4919. [4]KACHELRIES M, WATZKE O, KALENDER W A. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT [J]. Medical Physics, 2001, 28(4): 475-490. [5]HSIEH J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise [J]. Medical Physics, 1998, 25(11): 2139-2147. [6]WANG J, LI T F, LU H B, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-Ray computed tomography [J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272-1283. [7]SMITH P R, PETERS T M, BATES R H T. Image reconstruction from finite numbers of projections [J]. Journal of Physics A: Mathematical, Nuclear and General, 1973, 6(3): 361-382. [8]董继伟. CT迭代重建技术原理及其研究进展 [J]. 中国医学装备, 2016, 13(10): 128-133. DONG Jiwei. The progress on research and principles of computed tomography iterative reconstruction [J]. China Medical Equipment, 2016, 13(10): 128-133. [9]ZENG D, HUANG J, BIAN Z Y, et al. A simple low-dose X-ray CT simulation from high-dose scan [J]. IEEE Transactions on Nuclear Science, 2015, 62(5): 2226-2233. [10]牛彦敏, 马燕, 王旭初. 非下采样Contourlet域中基于改进隐马尔可夫树的低剂量CT图像去噪 [J]. 激光与光电子学进展, 2009, 46(12): 115-119. NIU Yanmin, MA Yan, WANG Xuchu. Low-dose CT image denoising via improved hidden Markov tree model in nonsubsampled contourlet domain [J]. Laser & Optoelectronics Progress, 2009, 46(12): 115-119. [11]KANG D, SLOMKA P J, NAKAZATO R, et al. Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm [J]. Proceedings of SPIE. 2013, 8669: 86692G. [12]GREEN M, MAROM E M, KIRYATI N, et al. Efficient low-dose CT denoising by locally-consistent non-local means (LC-NLM) [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016: 423-431. [13]朱永成, 陈阳, 罗立民, 等. 基于字典学习的低剂量X-ray CT图像去噪 [J]. 东南大学学报(自然科学版), 2012, 42(5): 864-868. ZHU Yongcheng, CHEN Yang, LUO Limin, et al. Dictionary learning based denoising of low-dose X-ray CT image [J]. Journal of Southeast University (Natural Science Edition), 2012, 42(5): 864-868. [14]CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT denoising with convolutional neural network [C]//International Symposium on Biomedical Imaging. Melbourne: IEEE, 2017: 143-146. [15]DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. [16]CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT via convolutional neural network [J]. Biomedical Optics Express, 2017, 8(2): 679-694. [17]CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. [18]NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]//International Conference on Machine Learning. Haifa: ACM, 2010: 807-814. [19]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [20]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//International Conference on Machine Learning. Lille: JMLR, 2015: 448-456. [21]JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding [C]//ACM International Conference on Multimedia. Orlando: ACM, 2014: 675-678. [22]KINGMA D P, BA J. Adam: A method for stochastic optimization [C]//International Conference on Learning Representations. San Diego: Springer, 2015: 1-15. |
[1] | 钱鹏, 王国亮, 朱文峰. 柔性变形下车窗升降三维装配公差建模及优化[J]. 上海交通大学学报, 2020, 54(11): 1134-1141. |
[2] | 包清临, 柴华奇, 赵嵩正, 王吉林. 采用机器学习算法的技术机会挖掘模型及应用[J]. 上海交通大学学报, 2020, 54(7): 705-717. |
[3] | 李柏鹤, 蒋祖华, 陶宁蓉, 孟令通, 郑虹. 考虑平板车合作运输的船舶分段堆场间调度[J]. 上海交通大学学报, 2020, 54(7): 718-727. |
[4] | 马仲航, 张执南. 多旋翼无人机遥操机械臂多功能仿真实验平台的设计与实现[J]. 上海交通大学学报, 2020, 54(6): 636-642. |
[5] | 孟令通, 蒋祖华, 陶宁蓉, 刘建峰, 郑虹. 考虑工艺顺序和组合分段的多堆场调度方法[J]. 上海交通大学学报, 2020, 54(4): 331-343. |
[6] | 张洁,赵新明,张朋,盛夏,晁晓娜,田凤祥. 面向火箭总装过程的工期延误预警方法[J]. 上海交通大学学报, 2020, 54(3): 322-330. |
[7] | 孙铭阳,颜国正,刘大生,王志武,韩玎,赵凯,杨雷. 基于超宽带技术的强制戒毒人员实时定位系统[J]. 上海交通大学学报, 2020, 54(1): 76-84. |
[8] | 王红雨,尹午荣,汪梁,胡江颢,乔文超. 基于HSV颜色空间的快速边缘提取算法[J]. 上海交通大学学报, 2019, 53(7): 765-772. |
[9] | 周炳海,刘文龙. 考虑能耗和准时的混合流水线多目标调度[J]. 上海交通大学学报, 2019, 53(7): 773-779. |
[10] | 孟令通,蒋祖华,陶宁蓉,刘建峰,李柏鹤. 船舶组合分段堆场调度方法[J]. 上海交通大学学报, 2019, 53(7): 780-788. |
[11] | 江旭东,李鹏飞,刘铮,滕晓艳. 基于剪切稀化效应的血液流体-扩张血管耦合模型的血管损伤分析[J]. 上海交通大学学报, 2019, 53(6): 757-764. |
[12] | 唐然,赵迎新,吴虹. 基于改进反馈判决的自动识别系统信号解调算法[J]. 上海交通大学学报, 2019, 53(5): 610-615. |
[13] | 叶仙,胡洁,田畔,戚进,车大钿,丁颖. 基于精细复合多尺度熵与支持向量机的睡眠分期[J]. 上海交通大学学报(自然版), 2019, 53(3): 321-326. |
[14] | 沈婷,孙锬锋,蒋兴浩. 基于双编码参数模型的同量化参数双压缩检测算法[J]. 上海交通大学学报(自然版), 2019, 53(3): 334-340. |
[15] | 孙一奇,吴爱国,董娜,邵一哲. 基于粒子滤波与改进GVF Snake的人手跟踪算法[J]. 上海交通大学学报(自然版), 2018, 52(7): 801-807. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||