上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 732-745.doi: 10.16183/j.cnki.jsjtu.2023.394

• 新型电力系统与综合能源 • 上一篇    下一篇

小样本数据驱动模式下的新建微电网优化调度策略

陈实, 杨林森, 刘艺洪, 罗欢(), 臧天磊, 周步祥   

  1. 四川大学 电气工程学院, 成都 610065
  • 收稿日期:2023-08-14 接受日期:2023-09-28 出版日期:2025-06-28 发布日期:2025-07-04
  • 通讯作者: 罗欢 E-mail:luohuan2378@163.com
  • 作者简介:陈 实(1977—),副教授,博士生导师,从事电力系统信息化及智能化、优化控制运行研究.
  • 基金资助:
    国家自然科学基金(51907097);国家重点研发计划(2021YFB4000500)

Optimal Scheduling Strategy of Newly-Built Microgrid in Small Sample Data-Driven Mode

CHEN Shi, YANG Linsen, LIU Yihong, LUO Huan(), ZANG Tianlei, ZHOU Buxiang   

  1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2023-08-14 Accepted:2023-09-28 Online:2025-06-28 Published:2025-07-04
  • Contact: LUO Huan E-mail:luohuan2378@163.com

摘要:

新建微电网缺少历史运行数据,常规数据驱动的方法难以精确预测可再生能源出力,进而影响调度计划制定的准确性.为此,提出一种适用于新建微电网小样本数据场景的微电网优化调度方法.首先,设计融合域对抗神经网络和长短期记忆网络的改进网络结构,将域对抗思想和梯度反转机制引入迁移学习中,提高模型泛化能力,减小数据的域分布差异,使用出力特征相似电站的丰富运行数据对目标电站出力进行预测,克服小样本条件下出力预测精度不高的问题.进一步,将优化调度模型转化为马尔可夫决策过程,使用双延迟深度确定性策略梯度算法求解.最后,以改进CIGRE 14节点微电网为例验证了所提方法的有效性.

关键词: 小样本, 可再生能源出力, 对抗迁移学习, 深度强化学习, 微电网优化调度

Abstract:

Newly built microgrids lack historical operation data, making it challenging to predict renewable power output accurately using conventional data-driven methods, which in turn affects the accuracy of scheduling plans. To address this problem, an optimal scheduling method for newly built microgrids in scenarios with limited sample data is proposed. First, an improved network structure integrating a domain adversarial neural network with a long-short-term memory network is designed. The domain adversarial approach and gradient inversion mechanism are incorporated into transfer learning to improve the generalization ability of the model. This reduces the domain distribution discrepancy in the data, and uses the rich operation data of power stations with similar output characteristics to predict the output of the target station, which overcomes the challenge of poor accuracy under the conditions of small samples. Additionally, the optimal scheduling model is transformed into a Markov decision process and solved using double-delay deep deterministic policy gradient algorithm. Finally, the effectiveness of the proposed method is validated through a case study involving an improved CIGRE 14-node microgrid.

Key words: small sample, renewable energy contribution, adversarial transfer learning, deep reinforcement learning, optimal scheduling of microgrid

中图分类号: